jump to navigation

What’s Important for the Business (Notes from Sep. 16 – 22, 2019) November 5, 2019

Posted by Anthony in Automation, Digital, education, experience, finance, Founders, global, Hiring, Leadership, marketing, questions, social, training, Uncategorized.
Tags: , , , , , , , , , , , , ,
add a comment

Ah, the art of learning. What can you absorb in the time that you allotted? Hopefully it was the good stuff, the one you can apply and remember. We’re not going to retain it all – far from it. Different surveys and studies will say between 10-30%, depending if you’re reading, listening, seeing things. Repetition, talking about details or applying what you’re picking up can improve those numbers – and it’s why there is still a ton of money being raised/made on improving it (Blinkist, Anki, Quizlet, rise of audio books and podcasts). This is all without bringing in the idea that the internet has allowed such a flood of ideas that opposing ones can exist simultaneously, persisting through its strong supporters. So, if you’re not doing research and coming to your own conclusion, it’s likely to be lead to whichever way you resonate with someone/something most (or first).

In reading through Constellation Software President’s letters to shareholders, you see a valiant attempt at conveying how he, executives and board members looked at the business health for the year – and refreshingly so, not explicitly through rose-tinted glasses. He critiques and suggests an option that reversion to the mean is possible based on a lower adjusted net income and cash flow from operating activities per share. Then he went through the shareholders returns on invested capital, average invested capital, and questioned the organic net revenue growth’s performance (as he notes that this is a primary core to the main metric for their performance: ROIC+OGr). Once he goes through the metric and it’s cash flow, he mentions that they’re looking to increase acquisitions, but the environment isn’t conducive to great values, so FCF may not be fully invested at attractive levels for the future. Then, he suggests a metric to cover this with a reasonable pattern, one less subject to shareholder alterations. Open to suggestions while he develops the reasoning for what another member has suggested for a good metric, he settles on FCF increase per share compared to average net income per share.

I loved his breakdown for the shareholders – mentioning half the shares trade for the year. He breaks it down simply as short-term, indexers, enterprising investors (including institutional, but also generally long-term, long-haul holders). He openly asks them to help find directors and members of the board and the difficulty that they saw initially after their IPO. The next paragraph was a big one, so I’ll include it:

Qualified and competent Directors are very rare, and not surprisingly, the track record of most boards is awful. According to the 2017 Hendrik Bessembinder study of approximately 26,000 stocks in the CRSP database, only 4% of the stocks generated all of the stock market’s return in excess of one-month T-Bills during the last 90 years. The other 96% of the stocks generated, in aggregate, the T-bill rate over that period. This means that 4% of boards oversaw all the long-term wealth creation by markets during that period. Even more disturbing, the boards for over 50% of public companies saw their businesses generate negative returns during their entire existence as public companies.

Wow. A) The recognition of wanting to be the best and provide a great board of directors for a long-time and B) genuine concern for the long-term view and suspicion of complacency arising. Both, I’d imagine, lead him to mention that vision / strategy are not necessarily courses of action – instead, perpetual objectives as the guiding point. Whether that’s seeking them out or maintaining what they had, he made sure it was top of mind. He sees that profitable VMS businesses may no longer come to be acquirable, and that he’s on the lookout for other opportunities – without them being attractive, though, he’d responsibly return FCF to investors.

Interestingly, he looked for Constellation to be devoid of “sycophants, mercenaries and spin-doctors” and wanted it to be a place where meritocratic results bring in “entrepreneurs and corporate refugees to invest their lives and and their capital and thrive”. Quite the statement for a business of such magnitude, when, especially from the outside, many succumb to the former (hell, take a look at Tech Twitter these days and a complaint I’ve had is that people seem to be comfortable bouncing between 2-3 companies a year for 5, 8. 10+ years). I’d love to build something that sustained a drive through many levels of employees.

“I find there is no magic to managing and leading. If you are smart, work harder… treat people fairly, do not ask them to do anything would not or have not done, share the credit, keep learning and keep teaching, then pretty soon you have followers. If you make sure that the team members are energetic, intelligent, and ethical people….”

Yup. That’s the way to build a company. Find that and hold on. And then he finalizes with the board requirements (which I’ll include at the bottom).

Hope you enjoy the notes this week.

  • Mike Strasser (@mstrasser), Motiv ring founder (Wharton XM)
    • Talking about the ring and how he knew the wearable would work
  • Lee Thompson (@flashpacklee), Flashpack founder, Marketing on a Budget (Wharton XM)
    flash_pack_logo_block-1

    • Photo journalist for 15 years
    • Talking about creating a brand through pictures, story-boarding, ethos of brand
    • If you can’t tell what your hook / pitch is, probably won’t sell
    • Went on first date with his now-wife from Match, wouldn’t tell him a great business idea
      • Post-wine glasses, she had a business idea for 30+ year olds wanting to travel – friends having too much of a family/kids
      • Adventure travel company for solo travelers in 30s and 40s, not tours via bus and such
      • Next few dates were researching travel industry, setting up a business
    • Book trip as solo traveler, then have others that you are meeting everyone else
      • Boutique hotels, price points established and like-minded – typically well off in careers, cash-rich
    • Launched with $15k each, savings and jumped in
      • Nobody would spend $1k+ on trips for a company that had no reviews
      • Generated a lot of PR, did a lot of viral videos by responding to twitter hashtags
      • Spent on Google ads and lost lots of money – built the website
    • Took a trip to Egypt on a budget, “come to Jesus moment”
      • If I can get on top of that and take a picture (Christ the Redeemer picture of a workman doing damage repair)
      • Wanted to take a picture on top and took a selfie
  • Mehrdad Baghai, Alchemy Growth cofounder & CEO (Mastering Innovation)
    the-alchemy-of-growth-full-1-638

    • Boutique strategy advisory firm advising large companies on innovation strategies
    • Designing organization architecture for growth, 5-10 years
    • Active investor in tech and p/e spaces with Macquarie Group
    • Former partner at McKinsey leading Growth Practice and then 3 years as Exec Dir at CSIR, Australia’s national science agency
      • Dozens of new tech companies
    • Also launched High Resolves with his wife, Roya, in 2005
  • Fred Destin (@fdestin), GP at Accel (20min VC 1/18/16)
    logos_master_accel

    • Former partner at Atlas Venture working with Zoopla (public), Secret Escapes, Integral Ad Science, Dailymotion (acq by Orange), PriceMinister (acq by Rakuten)
    • Studied life as derivatives at Goldman Sachs, first team on credit derivatives
      • Securitization of movie rights, derivatives in Pacific region for about 7 years
      • Opted out when it went from risk hedging to arbitrages
    • Moved to Speed Ventures for investing at really early seed
    • Spending a lot of time hiring the best 1-10 executives because you can’t spend time getting this wrong
      • Take a model that worked in 1 city (like Deliveroo), scaling it to 30+ and got there in under 3 years old
        • Fit consumer model and offering for the ones – brought new kinds of service to non-delivery food
      • Seed companies failing because you hire something you don’t understand – wrong team kills the team
        • Second mistake – overestimating the things you can do in the time – reality doesn’t match
    • Setting arbitrary goals for not being worthy of being funded – most companies run out of money or come close, being patient and empathetic with founders
    • Investors need mental plasticity for adjusting expectations on what to best deliver
    • Founders feeling screwed over because it was never possible for them to communicate the right decisions being made
      • Mix of market difficulty or overambitious of timing – how to improve intimacy and mutual trust
    • He likes to spend 3-6 months knowing founders – wants to do strategic sessions, whiteboard issues how you would solve it – discovery and disagree
      • Can work through disagreements, see how people work collaboratively
      • Engineer a situation of tension – hiring / decision made, create it to see pushback
      • Could we do an 8 hour wine test / road test – can we banter and have a pleasant time being together (Boston to Montreal, London to South of France)
    • Needs to ensure performance and milestones, sounding board, interest of company / employees / customers and investor with fiduciary standards
      • Had to tell guys at Real3D and say that they couldn’t invest – told them early, though
      • Mentioned Boston VC that said he’s said “No” so often that he just fizzles out – Fred said he tries to give constructive feedback but not always
        • He used to send very detailed No emails but would receive replies about not understanding opportunity and pushback – called stupid or not getting it
        • Now he responds with “Busy with other opportunities”, but sometimes he has things fall through the cracks
    • Favorite book: Mastering Margarita, missing and saying No to successful opportunities – doesn’t rue or look back like that because portfolio co’s do well enough
      • Success measure – how long it takes for knowing (16 years for him), took 10-12 for success as investor
    • Wasn’t super excited about returning to London but was pleasantly surprised about how vibrant it was – still US is more tolerant about money and quicker pace
      • Competitors share, acquisitions are faster – Accel moves fast so it’s advantageous but not overall
      • Boston wants to import the well of technical talent and ML – hubs working together in Europe will improve it
  • Thirteen Minutes to the Moon
    • Episode 7: Michael Collins: Third Man
      • Command module pilot for the mission
      • Test pilot before being selected as an astronaut – 90% luck he landed in that role
      • Someone wrote to Eisenhower that the best option for selection for astronauts would be experimental test pilots because apt to new scenarios and flight
        • Compared to deep sea divers or others
      • Collins had been turned down the first time to supplement that first 7 – after a year of more experience, selected in class of 1963 with Aldrin
        • First flight was 1966 on Gemini X, rendezvous and docking maneuvers
        • Once LEO Gemini flights were successful, Apollo XI was announced in January 1969
        • July 16, 1969 – launch sequence day – was responsible for launching lunar module to turn it around from Saturn V rocket
      • Was an English major and just did guidance verbs/nouns memorization to control it
      • As they neared moon, they were on far side and lost contact with Houston
        • Takes back everything bad he ever said about MIT – accuracy of system was ridiculous, 3000 ft/s and only had 0.1 ft/s in any one direction error
        • If something went wrong for landing lunar module, Michael couldn’t change his speed but it’d be up to him to figure out what to do
        • Mathematicians were responsible for coming up with a list of 18 variations for problems and what to do – some they hadn’t trained for
      • He felt alone, awareness of being on the other side of the moon, solo after Aldrin and Armstrong picked up speed on their way down

 

CSI Board Role Search Criteria
THE ROLE
Thought Partner – Thought partner for senior leadership.
Long-term Orientation – Unfazed by short term pressure. Focused on CSI’s long-term issues.
Timeframe – Able to serve on the board for 20+ years.
Investment in CSI – Willing to make a significant equity investment in CSI, above and beyond board comp.
THE CANDIDATE
High Quality Business – Understands what constitutes a high quality business.
Autonomy -Appreciates the motivational power of autonomy, decentralisation.
Cultural Fit – Respects and gets along with the current senior CSI management as well as the board.
Ownership – Believes in the motivational power of equity ownership.
High Impact / Low Ego – Will intervene when necessary, contribute meaningfully, but not dominate discourse.
Out of Kitchen – Can resist the urge to get into the kitchen when there’s a chef already in there.
EXPERIENCE
Builder – Helped build or maintain (as a director, manager or major shareholder) a large
organisation (>1000 employees) over an extended period, while providing a superior
return to owners (ideally including employee owners).
Decentralized – Experience with a decentralised company (nice, not necessary).
Capital Allocation – Experience in a capital allocation role (nice, not necessary).
LIKELY BACKGROUND
Family owned business operator or director.
CEO / #2 for exceptional business.
Entrepreneur
SEARCH PATHS
Multi-generational family owned businesses with high ROIC within reach of our
network and ideally local to CSI (increases involvement, eases reference checks, more
likely to know CSI, decreases absenteeism).
High quality businesses with strong shareholder alignment.
Great capital allocators in the corporate world.
CEOs with great shareholder letters and high quality businesses.

Fostering a Community (Notes from Aug 26 – Sep 1, 2019) September 23, 2019

Posted by Anthony in Blockchain, Digital, experience, finance, Founders, global, Hiring, Leadership, questions, social, Strategy, training, Uncategorized, WomenInWork.
Tags: , , , , , , , , , , , , , , , ,
add a comment

What a crazy couple of weeks! And it’s not likely to slow – I’ll give some more information behind that very shortly. Exciting new things on the horizon, though – and ones I’ll be proud to announce when I can. August provided a lot of clarity in direction – good because it wasn’t exactly restful.

I mentioned it in last week’s post, as well, but I’ve been hyper-aware of the people around me interacting, enjoying and laughing over commonalities. It’s at every level, though I peruse coffee shops far more often than other places. Interesting stories are almost expected. If you refer to my reading list, you’ll notice a new one, Dignity. As part of a book club, I was hesitant and unsure when it took the lead because of the topic – primarily drugs/poverty/downtrodden/unlucky collection as reported, but halfway through I’ve been pleasantly surprised at how much perspective Chris provides. I can’t help but draw that fixture of everyone has their own experiences that provide the lens through which we draw conclusions on everything else. Endless and it’s very tough to remove ourselves or step back – especially with things we’re unfamiliar with.

Ultimately, though, everyone wants to share their experiences with others – whether it’s some depth of despair, depression or building a community, religion, or hiring employees to work with or spending time for fun and adventure. We’re human. We spend time with other humans. There’s a reason we’ve survived this long in groups and why the solo artists end up in peril – this is completely generalized but in MY experience, I’d say I see a truth in this.

Kate Shillo, Director at Galvanize, mentioned her journey for Martha Stewart’s media company to Galvanize where they help businesses grow with their people. Morgan Dunbar, at Bendigo Partners, discussed his involvement in AIR – summit and conference for sharing ideas/businesses for financial services to hopefully rise all boats, as they say. Mike Vernal, at Sequoia Capital, went through how Facebook’s earlier years helped him with approaching problems and the finality of decisions – what they’ve fostered for the boards he is now a member of. He tries to understand the start-up and the founders view of the problem after a quick determination of if they know the idea enough. Others, which I only caught pieces of, had similar views.

I hope your community, whatever that may be, is productive and positive – helping you gain what you’d prefer from it.

  • Kate Shillo (@kshillo), Director at Galvanize Ventures (20min VC 1/13/16)
    gavalize-logo

    • Investing in hardware and future of IoT
    • Got an interview with Martha Stewart’s Omni Media and she was temping for her – living in NYC 2007
      • Would have an idea in her company – create, build & continue w/ mini incubators
      • She wishes Marthapedia was made – hasn’t done it yet
    • Wasn’t quite stimulated enough in 2007, she quit and bought a surfboard – 6 months later she was back in NYC
      • Had met Kenny Lerer (around in interviews) – met before Martha with an internet newspaper (Huff Post)
      • Took a huge pay cut to do some research on other startups as Kenny was on the chair for Huffington Post (~30 employees)
        • He was chair at Betaworks at that time, too
      • She was the human tester for Betaworks (only other one to test)
      • Helped launch Ken Lerer Ventures (Lerer Hippeau Ventures) as formalizing process for his angel investing
    • Help of having Huffington Post (sold in 2011) as starting propelled them into NYC market – unheard of at the time
      • Market down, nobody investing in seed – writing small checks at Lerer “Go by Betaworks and Lerer Ventures is there”
      • First content investment was Food 52
      • Consumer tech pics – paperless post, Warby Parker, Bottle Bar, BarkBox
    • Galvanize (continuous learning – helping businesses and their business grow – new archetype in higher ed)
      • Galvanize Ventures with 3 partners – all of elements to provide their startups
      • Early stage – small, idea from pre-seed to series A (seed process), reserving for follow-ons
      • Small markets like ATX, PHX, SLC to get in – coaching co’s along the way
    • 48 investments in 2 years
      • Consumer mobile-heavy so far, her excitement in hardware – starting in 2014 was IoT hotbed
    • Crowdfunding as a bit of advertising, validating customer interaction and capital as gravy – her opinion
      • Shipping product is usually a hurdle – many people don’t want to invest without seeing this
      • Reflecting on Lerer investments – seeing market share of her old portfolio companies
    • Size of fund is $10.2 mln, $100k checks for pre-seed, seed and series A – get priced out for series A
    • Favorite book: God of Small Things, misconception for VC: that it’s easy (no control for company sometimes but exciting when it works)
      • Sourcing vs existing portfolio co’s helping
    • Favorite apps: Moment app, Twodots (betaworks), Slash, Sunrise calendar, Pant, Wildcard and Venmo at the time
    • Recent investment: msg.ai empowering brands for messaging platforms ecommerce
  • Morgan Dunbar, partner at Bendigo Partners (FYI 8/5/19)
    86aeb71777442ba0eadc52ed226d20ee

    • Capital Market Space within FinTech as principal investors
    • Was mostly on sell-side for analytics on portfolio construction – with Citi Group in Tokyo in 2009 running Japanese equities
    • Bendigo – early stage fintech companies with bias on capital markets, retail, middle and back office
      • Advisor practice with institutional, private equity, large enterprise in capital marketers
      • Transaction advisory, operational consulting and strategy around fintech ecosystem
    • Bill Stevenson partner on AIR Summit – 2013 creation for invitation-only for senior buy/sell-side pros to discuss high-level themes
      • Alpha Innovation Required (AIR) – invite ~20 emerging fintech cos to speak to a use case for front office (alpha generative)
    • Traditional VCs have a fundamental lack of operational understanding in capital markets
      • Secondly, long sales cycle in businesses – thousands at enterprise level vs millions in consumer
      • Regulatory that can be scary without expertise
    • Artificial Intelligence as just replicating a process (as opposed to intelligent)
      • AIR focusing on people, organization, talent and cultural alpha
      • Tradition, trust, not new – center for innovation and trying to do something, be empowered for innovation and development
    • Google pushing into asset management other than cloud, data and analytics
      • Asset managers may start looking at Google like Bloomberg – help build portfolios, vendors to tap for alpha
    • If buy-side problem, then sell-side has a problem, fee compression (growth of passive) – active vs passive (value for performance)
      • Robos (whether or not they’re worth valuations) validated demographics looking for low-cost access with simple UI and intuitive
  • Mike Vernal (@mvernal), Partner at Sequoia Capital (20min VC 8/26/19)
    sequoia

    • Citizen, rideOS, Rockset, Threads & Houseparty board
    • Spent 8 years at Facebook as VP of Product
    • Sequoia – Brian, led A to join board for his roommate’s company and his former PM at Microsoft started a co in 2009 and Brian joined
      • Joined Scouts program early on
      • Had first child a week prior to 8 years at Facebook, took paternity leave to reflect
    • Really enjoyed Facebook first few years – tremendous energy and optimism to create something from nothing
      • Early stage founders in a garage for idealism and irrational energy, switched to Sequoia (been there 3 years)
    • Entrepreneurs that can explain entirety of business in 3-5 min, rest of meeting is the details of the pitch
      • Feedback cycle for great and enduring company – decision-making is a short or longer memo and reading through them
      • For his mistakes, thinking and writing and playing out future – each case was instinctually being interested but not trusting instincts
        • Try to be rational and analysis-driven
      • More importantly, internal conviction on a company, founding team and working on
      • If not at Sequoia, would he go work for that company?
    • Terminal and non-terminal decisions – once you’ve made it, you can’t make it again
      • Do something, if wrong, do it again – try to hire, realize mistake, hire again
        • Pick one, roll out to some, figure if it’s working or not, and iterating
      • Venture – most important is decisions – if you pass a round, you’re done maybe until next round
      • In operations, tempo and learning for decision-making
    • Bundling vs Unbundling – past 10 years will be unbundling of SaaS and best in breed
      • SaaS that are more niche – features as something larger, $1 or $2 / ee / mo
      • Thinks there will be a consolidation of the apps, incumbents that will integrate and put them all-in-one (Notion)
      • Meta-SaaS apps that will put them together as the market matures
      • SaaS as software, business software (maybe banks that are on-premise)
    • Book: 100 years of Solitude, almost every startup underprices their product
    • Time management is the challenge – constant battle, reading quickly and get the ones he finds most interesting
    • Verkada as most recent investment – can build a great experience
  • Kash Mathur (@kashmathur), COO of Chewse (Wharton XM)
    chewse-open-graph-e1559782200236

    • Tracy and cofounders starting it in LA originally, in 2011 before bringing it to SF for 500 Startups
    • Attracting Kash in 2016 as they were figuring out SF before relaunching LA
    • Corporate culture, enterprise dealing and owning the customer service – blended marketplace
      • Starting each executive, strategy board with a “One thing most people don’t know about me is…”
      • Connecting between people
    • Why they have connected Hosts for each enterprise – owning the location, service and whole process
      • Important value and differentiator from other catering companies
  • Linda Crawford, CEO of Helpshift (Wharton XM)
    helpshift-logo

    • Being named top 50 SaaS CEO of 2018, joining HelpShift after Salesforce
    • CCO (customer) at Optimizely, as well as Board Member at Demandwise
  • Rob Farmer, Independent Advisor Study and assets at Schwab (Wharton XM)
    • Talking about participants and customers

Your Experience is Your Own, Only (Notes from Aug 19 to Aug 25, 2019) September 10, 2019

Posted by Anthony in Automation, Blockchain, Digital, experience, finance, Founders, global, gym, Hiring, Leadership, marketing, NLP, social, Strategy, training, Uncategorized, WomenInWork.
Tags: , , , , , , , , , , , , , , , ,
add a comment

I’ve been considering more and more about how my experiences are only mine. Especially when I feel like I don’t share them often. Working so much but not always discussing it with people outside of work (re: almost never). I was reminded of this while I met with a family member who I see roughly once a month or so. When she asks how work is or I mention I’m busy on days when she wants to meet, it often came with a “busy with a meeting at X but can do Y”. Never more. And almost always, I ask how her work is, and she divulges. So when we sat down for dinner and she point blank asked “I have 2 things: 1. Can you help me with something on my new phone? and 2. What is it actually that you do?” I chuckled because generally I don’t care to share that information – I really enjoy valuing start-ups and learning about the space / tech / finance / education changes, but other than high level stuff, rarely does anyone want to hear me talk extensively a la a podcast episode deep-dive or something. They don’t see the relevance, other than it being exciting for me. Same with when I was advising, same since launching the fund and all while working on project deployment in data science for others.

I strongly suggest reading through Colson Whitehead’s essay here about his version of New York City. How it’s interpreted. essay here

Another thing I read through today was Farnam Street’s blog post on asking seemingly simple questions that may be defined or determined by our experiences with those concepts. An example he uses: “What is a horse?” Try to think how we may answer this.
Power questions

 

  • AI in the Past, Present and Future (BDB 7/16/19)
    teradata-logo-social

    • Rod Bodkin, Tech Director at CTOs office in Google
      • Was with BigDataAnalytics, bought by Teradata and grew it from there
    • Grew Google after seeing the field advancing quickly, state of the art as evolving
    • First people to put Hadoop into production – Yahoo was too scared, single algorithm took weeks at the time
    • OpenAI put out state of art compute paper – 4 year paper, 300k X computation (double every 3.5 months)
    • For Google, evolution of cloud in the enterprise is a big deal – consumer side of Google as leading the way
      • Can just put data into BigQuery because of capacity and accessibility of data – increased production 4x on data science team
    • Big investments into Anthos – open source tech to enable cloud-native services in different clouds, GKE (Kubernetes)
      • Edge TPUs as 100x faster to compute a model vs traditional mobile CPU – TPU as accelerator chip for DL
      • CPU is completely general so less efficient
      • GPU has a boost over CPU but behind TPU accelerators (starting GPU chips, Tensor unit)
    • Kaggle Days and Google IO for cloud Pixel modeling and AutoML performing very well
    • Herrari’s book – 21 Problems for 21st Century
  • Tricia Han, CEO of Daily Burn (Wharton XM)
    51w1ctcdszl._sy355_

    • Community of like-minded fitness fanatics
    • Live 365 – 30min shows on working out, regulars
    • In survey, millenials said fitness #1 and health/wellness at #5
    • Fitness had about happiness equal to making $25k more

 

 

 

  • State and Future of Robotics, ML and Digital Celebs (Venture Stories, 8/8/19)
    ht6qfyjc_400x400

    • Michael Dempsey (@mhdempsey) – partner at Compound
    • Read, Listen, Write, Talk – Cunningham’s Law – share something with a strong opinion is likely to get responses
      • More value when shared publicly
    • Robotics, ML as cascading forward – robots broadly, initially – types, how to make them intelligent (2013)
      • Drones, hardware platform (DJI as leader), space and now as unsupervised or self-supervised learning
      • Deep dive on innovation for what he’s spent the last year or two – investments, as well
    • Women’s health as growing market for fertility and experience layer in healthcare system
      • Higher-end service around egg freezing (but was shattered by Tia founders), IVF or embryo screening
      • 2 investments for him already in the space, maybe more after
    • Strategic robot acquisition for Amazon, why now? Major companies in the space – he’s punted in that space, more investors.
      • Didn’t see meaningful differentiation in the space – didn’t see a company that had that from an investing side
      • Food was where he saw robotics as consistent – grew up in the industry
      • Really easy to get pilots but not for revenue – wants full-stack robotics company
      • Robots taking over entire industry – automated X / Y / Z (rebar, construction robotics)
      • Front of house and back of house retail (analytics, stocking)
    • Weird robot applications (in-home, manicures, old person help)
    • If company is built on algorithm being best, company probably won’t survive
      • Must talk to people doing operating – not just reading
      • Self-driving cars – spent time with Daniel Gruber, discussing local maximum and rules to write
        • If you can drive in NY, you can drive in SF, LA, etc…. 2007 DARPA challenge Waymo / Tesla / Cruise as result – path-planning
        • Intelligence approach – what are incentives / agents to accomplish in a car for end-to-end approach to scale
      • 1 model to move them all – enough compute that model can solve it (DL is direct function of this, for Google)
    • Investment in data labeling space – more people moving into production requires more people getting good data and filtering data
      • Larger data builds where it may cause $50-200mln per year to label but 50% is useless
      • Environmental impact and thinking about it – consolidating data but into better (CartaAI and SkillAI)
    • DeepGram end-to-end audio inscription – 80-85% can be good, but if you mess up some key words in certain industries, it’s more expensive
      • Voice side, horizontal players are pretty good – if x% of users will have same questions, simple workflow or algorithms
    • GANs and new generation of faces – Disney and animation nerd for a while – power of IP on agencies, CAA for example and Marvel
      • Stories through animated content, Robot Chicken, others – Robert Dillon – bringing in GANs
      • Watching live action is watching someone else’s story whereas an animated one brings you into the story
    • Trusting the people that have been given permissions – Reddit or being anonymous
  • John Roese, Global CTO of Dell EMC (Mastering Innovation, Wharton XM)
    dellemc2

    • Talking about the 20 year vision to be autonomous but incremental parts until then
      • Driving assist, improved AI in driving, maybe geofenced before autonomous
      • Autonomous vehicles as source of innovation – sensors / LiDar very useful for other industries but too expensive
        • Had talked to studios about virtual studios or conferences – expense should come down with auto
      • Vast problems with uncontrolled or unconstrained problems – already have fully autonomous warehouses or geofenced areas
    • Interested in bio feedback as input to AI or MI systems
      • Used example of video conferences with sensing stress levels – clearer audio, accent correction, more people = more stress
      • Cars already using bio feedback
      • People already wearing sensors via devices – can use that as more input
    • Attacking low hanging fruit because of data ethics or biased data inputs – easier to solve problems that are valuable in neatly constrained
  • Amri Kibbler, Katya Libin, Hey Mama co-founders (Wharton XM)
    • Collaborate and share and support their work for mothers as executives
  • 13 Minutes to the Moon
    • Ep. 06 – “Saving 1968”
      • Apollo II’s first landing – without Apollo VIII, Pathfinder and 250k mi to the moon, maybe gutsiest flight until then
      • Flying VIII before end of year – “We were not ready”
      • 2 deaths of MLK and Kennedy – April had hundreds of cities taking part in riots, thousands arrested
        • 1968 Apollo program was in shock and Saturn V rocket was malfunctioning – troubled test flights
        • Almost busted in all 3 phases the last time it had flown, and the lunar module had slowed down, as well
      • Taking lunar module away from Apollo VIII – former test pilot Jim Lovell said it as Lewis & Clark expedition
        • So many firsts, risks that were enormous on a 100x scale – reason Jim was there in the first place
        • Crews normally had 6 months but VIII only had 4 – mathematicians were responsible for all of the angles and engine durations
      • 1 chance in 3 for mission successful, 1 in 3 for non-crash but unsuccessful and 1 in 3 for not coming back – wife accepted this
      • Media as delivering “death pills” for dying painlessly – respondents would say oxygen would run out and it’d be fairly painless
      • Trans-Lunar Injection – don’t shoot at the duck, shoot out front – wanted to go to 60 mi ahead of where the moon would be
        • Spacecraft needed to get to the right moment, speed, angle and altitude for the moon
        • Human computer – Katherine Johnson – was responsible for the trajectory for launch time (Hidden Figures)
        • Took 3 days from launch to get to target – Lunar Orbit Insertion
      • Astronauts were late on radio contact from dark side of moon
        • Came back to light and could hide behind his thumb – 5 billion people and everything he ever knew
        • Finishing Apollo VIII with scripture and then Good Night, Good Luck and Merry Christmas
  • Bill Clerico, co-founder and CEO of WePay (DealMakers 8/13/19)
    wepay-1

    • Leading provider of integrated payments for software platforms, raised $75mil from SV Angel, Highland Capital, Ignition Partners, August Cap
      • Founders of YouTube and PayPal also in
    • Grew up in NJ, spent time in NY and father worked in Air Force and construction – taught himself computers in 80s
      • Received a scholarship to go to BC, met his co-founder for WePay waiting for the flight for the interview 6 years prior
      • Went to do IB at Jeffray’s – advising tech and software companies with clients, passionate and building for a year to quit
    • Installed a suit rack in his car because he wasn’t going home – long hours, brutal fundraising
    • Group payments that they saw repeatedly at the age of 22 – big market for payments, testing it out
      • Wouldn’t have less responsibilities than at that time – Rich deferred law school and Bill had worked on it full time
      • Tried to pitch Boston investors and failed – less receptive to early stage investing, applied to YC instead
        • Came out to the valley for an interview
    • Spent 1.5 year to invest and took money and sold furniture and drove to the west, taking turns
      • Product was conceptual, pitch deck was opinion and it was hard to prove a market need to investors – conceptual idea
      • In YC, built product by talking to fraternity treasurers at SJSU, ski club coordinators – got them using the product
        • Went to talk to investors by showing them the traction
      • Why would a treasurer to accept payments with different product? Host bbq and invite them over. Go to dorm room and watch product usage.
        • Responsive to requests – take feedback and be better than existing solutions. Gain knowledge in start by doing things not scaling.
    • Group payments were a big problem and needed a solution – weren’t willing to pay, or pay transaction fees
      • Venmo had raised money and had a bunch of momentum by giving away services for free
      • Competitors were taking advantage, 2 years after YC – pivoted but weren’t growing as fast
        • Built an events tool, donation, invoicing tool and an API for customer use – other companies were just doing those
      • Realized they could build an API making payments experience easy and simple and let competitors do whatever
        • Saw huge traction/benefit where they could be brought in via the API (since they had raised $30mln)
        • Needed the business to be grown but expectations were higher
    • 600 lb block of ice for marketing $500 in front of PayPal Dev Conf at Moscone Center – still highest market day
      • Since PayPal had a knack for freezing people’s accounts randomly
    • Pivoted to shut off 70% revenue stream from consumer product, gaining growth on API from other customers
      • GoFundMe used them as a payments processor from when they were 2 person company
    • Prior to acquisition by JPMC – 200 employees at that time, now fintech / bank
      • Asset purchase agreement day – tired – was negotiating final points of deal in person, had some drinks to celebrate
      • Bought a cabin in Mendocino County – deal was valued at $400mln
    • Part-time partner at YC now – helping companies in general – relevant to the next entrepreneurs and the scale
    • Angel investing on the side – much longer and harder and scarier than he ever would’ve imagined
      • Reinforces this to his younger self – startup doesn’t fail unless you give up
  • Evolving Narratives in the Crypto Space with Andreas M. Antonopoulos (FYI 3/12/19)
    • With Arjun Balaji, as well — and similar for me as host, his intro to Crypto space video YT
    • Conflict of Crypto Visions article by Arjun and host
      • Identified closely with unconstrained vision and doing talks on not playing zero-sum mentality
      • Ethereum as different than Bitcoin – evolving directed by design choices
    • Engineering consists of design tradeoffs – choices of optimizing and de-optimizing parts of systems
    • If you want to make something that is Bitcoin-ish, you run into problems for all the strengths that are already inherent to Bitcoin network
      • Differentiate enough to be a new thing from Bitcoin – can’t mingle or occupy that niche
      • Is privacy a big enough differentiator to separate from Bitcoin network?
        • Strong privacy in base layer – can end up with inflation bugs that can damage sound money policy of Bitcoin for the privacy
      • Sound money vs private money – not clear yet.
    • Hard money displaces other forms of money in long term but only if they’re maximalists and logical
    • Friction levels determining switching back and forth on a wallet between utility or store of value tokens / coins in the future
      • Automated backend where they are optimized
    • Interest in Ethereum – tradeoff worth making for smart contracts and applications that aren’t just money outside of Bitcoin
      • How the technology of VM blockchains work
      • Scaling is harder in Ethereum – proof of stake has different security model than proof of work
      • Sharding, beacon chain, polka dot – not sure if it will work or what the security constraints are – could have applicability to BTC
    • Bitcoin critics – make the case for it but then explain value proposition or store of value
      • He has an opinion, others have opinions – none will determine how the market develops
      • Arguing is a waste of time. If you understand the tool that’s best for a job, you’re a better user of tools.
        • Which is the correct tool and how to use it properly – perception is limiting in general
  • Sam Yagan, CEO of ShopRunner (Wharton XM)
    sr_stack_full

    • Founding dating OkCupid and then going to Match and scaling to IPO
      • Going from running a team of 30 to 1000 in a month
    • Ecommerce ShopRunner as retailers combatting Amazon and Walmart – providing scale and guarantees with 2-day shipping for many retailers
      • Joining after Michael Rubin had founded it on premise of “Amazon for all others”
    • Making sure they have AMEX partnership to make it easy for customers
  • Travis Katz, VP of Product at Skyscanner (Wharton XM)
    image1-4

    • Had been cofounder of Trip.com and at Myspace prior
    • Social media giants Facebook and Myspace – selling to NewsCorp and getting revenue compared to funded Facebook acquiring users

Different Ways to Create (Notes from June 10 – June 16, 2019) July 3, 2019

Posted by Anthony in Digital, experience, finance, Founders, global, Hiring, Leadership, NFL, questions, social, Strategy, training, Uncategorized, WomenInWork.
Tags: , , , , , , , , , , , , , , , , , , , , , ,
add a comment

3 fantastic sounding women to start. One in VC and finance, discussing the difference between NYC and SF for her. The second compared in-house marketing strategy and outside influence. What’s that look like? How much control is there? Last, but certainly not least, was an author who discusses something that I’ve seen with family and my sister – the challenge of raising a child while balancing some semblance of normalcy in work. What’s expected from yourself? What should be reasonably expected from work? What’s a balance?

Those women: Erin Glenn, Julie Scelzo and Lauren Smith Brody.

A few sportsmen discussed data and capital. Sixers Innovation Lab and former exec for And1 mentioned how they think about growth in Philadelphia and the brand, who can they support in the community that can also help with the team. John Urschel, former Baltimore Raven, is a published mathematician now who discussed the influx of data collection and analysis among all sports and teams. What they can do makes a great athlete experience, fan experience and overall performance improves.

A plethora of rising stars followed, from Kanyi of Collaborative Fund to Sofia Colucci of Coors and the co-founders for SHINE text. Hope you enjoy my notes and you check out the podcast episodes!

  • Erin Glenn (@leeeringlenn), CEO of Quire (20min VC FF025)
    252463644980_8db07c968fc1d66203ac_512

    • Entrepreneur as kid – day business for summer camps, then management consulting, IB and took a company public (econ consulting firm)
    • Got bug to start own thing in 2010 – joined KIXEYE in SF for 4 years, video game company
    • Wanted to go to NYC (as kid in OK) – went to meet w Betaworks, fell in love with Quire
      • Mutual conv to join Quire – loved it – equity crowdfund co
      • Venture-back co’s enabling portion to raise for community & mission
        • Min. investment is $2500 – supporting larger investments as well, up to $250k
    • Likelihood for investors to get taken advantage of – Title III discussion (investors with <$100k income/net worth can invest up to $2k or 5% of income)
    • Mattermark study on investor bases that exist and why people do invest
      • Investor and diversity – minority, gender, big differences in those that follow Mattermark or others
    • Crowd won’t provide scaling / grow money (the $50mil+ rounds), but community can help participation at a lower level
    • Motivation to invest, other than financial incentive – supporting company’s mission + founders, spurring economic growth + innovation
      • Real commitment to realize dreams, grow economy
    • Benefits with crowd investing for company – moral and psychological
      • Supporters of the company can invest, which is reinforcing for doing it – customers that are owners of the business spend more, loyal, etc
    • SF vs NY startup ecosystems and CEO role
      • Had joined Quire with 2 suitcases, dog and air mattress after 2 days there
      • CEO role – really fun and exhilarating with challenges daily, gained confidence at eliciting feedback from ideas
        • Coming up with better solutions and getting them to help because we don’t have all answers
      • Intensity and vibrancy, competitive spirit in NY even though it’s smaller-feeling
        • Want to take on SV and not give up the competitiveness
        • More female founders in NY – fashion, finance, media in senior executives trying new things
    • Favorite book: Magic Mountain ahead of WWII in Europe, Switzerland
    • Favorite blog: Fred Wilson’s and Tim Cook as favorite innovator
    • Gimlet Media (first investment), Kano, Duel as others
  • Julie Scelzo, executive creative director at McGarryBowen (Wharton XM)
    mcgarrybowen-logo-2

    • Talking about marketing difference between in house and outside
      • Going from Creative MD for Pandora to take on MGB AMEX
    • Moving from agency to internal at Facebook – not even a salary bump, but just felt right
      • Worked helping clients was rewarding but she missed creating
  • Lauren Smith Brody, author of The Fifth Trimester (Wharton XM)
    51q5f8hqm6l

    • Discussion of parental leave in the workplace – if uneven with your partner, mixing it up or staggering
    • First 6 months as crucial for development – how to best alleviate this
      • Every person is different and has different attitudes
      • Nobody can generally be told how something may feel for them
    • Having the partner available in the first 6-9 months provides evidence that they’re capable, and can understand some of processes
    • First day of work being scary – moreso as a parent – train whole life to be in workplace
      • Can be comforting back at work, not so much for first days as a parent
  • Dilip Goswami, Molekule Air Filters (Wharton XM)
    • Being his father’s son, a typical engineer
    • Developing and deciding what part of product to have in house vs outside
      • Hybrid model
    • Having customer support and knowing it worked – shipping and using that as validation
  • Seth Berger, founder and CEO of And1, Sixers Innovation Lab (Wharton XM)
    170718_innovationlab

    • Discussing how coaching basketball to young adults was so helpful
    • Marrying And1 with his passion for basketball and teaching and being around it
    • Sixers Innovation Lab – knew Josh from the 90s working on a failed internet co originally
      • Helping with capital up to $1mn and seeing 10x returns so far
  • John Urschel (@johnCurschel), Former lineman with Ravens, MIT mathematician (Wharton XM)
    • Talking about the lifelong balance of math / football from his memoir
    • Thinking about where analytics may be super exciting in sports – real-time strategy if they’re allowed the computers / data on-field/court
      • Tracking data is so strong, it’d be interesting to see what coaches may do to get there
  • Nathan Furr, Curtis Lefrandt, Innovation Capital author (Wharton XM)
    41dqasciscl._sx335_bo1204203200_

    • Author discussing how innovation costs resources
    • Talking with Marc Benioff and others for the most innovative leaders

 

 

 

 

  • Sofia Colucci, VP Innovation of Miller Coors (Measured Thoughts, Wharton)
    • Introducing a new brand, Cape Line, into the world
      • Usually a 1.5 – 2 year process for a corp this size
      • Cut it down and released in 2019, dropped the other project (Project Sprint)
    • Had already done market research, wanted a more healthy, alternative to beer for women – cocktails in a can
      • Packaging and what that would look like after tasting
  • Jennifer Pryce (@jennpryce), President CEO of Calvert Impact Capital (Wharton XM)
    • Impact capital and how they grade different companies on the degrees for investment
    • Infrastructure, seeing them surpass $1bn
  • Marah Lidey (@marahml), Naomi Hirabayashi, co-founders of SHINE app (Wharton XM)
    246x0w

    • SHINE as a wellness app for meditation
      • Gaining ground with their superusers – seeking feedback
    • Self-care platform, weren’t sure how they attracted so many men – but it’s definitely catered to their experiecne
      • Reached out to one of the first superusers that was male to get his input and to have influencers help
    • Product-market fit and development was always based on how they wanted the app to be- what they were searching for
  • Kanyi Maqubela (@km), Partner @ Collaborative Fund (20min VC 094)
    deuobz-u8aarwgs

    • From South Africa originally, investments into CodeAcademy, Reddit, AngelList, AltSchool, TaskRabbit
    • Founding employee of Doostang, attended Stanford Uni & worked on Obama campaign in 2008, as well
      • Dropped out of Stanford, compelled by interest to see other part of world – did a startup, $20mil of VC funding for a couple startups
        • Being young, decision to leave was easy but once he’d left, it was tough
        • Making friendships and lasting connections easily in college – some communities outside, in pro world, was rough
      • Met his partner, Craig, while finishing school and doing work in design – convinced him to help him with CF
    • Investors are those that believe in collaborative economy – nodes, peer-to-peer and nodes for networking
      • Every consumer/employee/companies have obligation to align interests and value sets
      • Looking at companies to focus on impact and values – aspirational culture as outcome of collaboration
    • For the fund – stage specialization or theme?
      • Theme may be time-efficient-oriented. Reminder that many of most successful people have skipped on massive wins multiple times over.
        • Altman mentioned about having a point of view and heuristic to drive decisions (whether it’s stage or theme)
    • Being a partner at 30 – GPs with skin in the game
      • As young, have to have been very successful early or came from money to get into the fund
      • Needs to prove himself but as younger, may have been very risk adverse in the sense he wasn’t free-swinging
        • Facebook went public 7 years (quick for industry, but not necessarily quick for a fund) – feedback loop timeframes
      • Million ways to market as investor, drive value as portfolio, data, theme or stage specific
        • Blog as high leverage marketing for himself, writing is how he clarifies his ideas to himself and the public
    • Limits and is very prescriptive for the networking aspect of VC, conferences – wife in medical school so when she’s free, he makes himself free
    • Accelerator / demo days as good for investing – he likes being first institutional round, but thinks demo day to discover is not their best way
      • Sometimes the due diligence for demo days of seeing what’s out there
      • He uses them to talk to other VCs, see source and deal flow – coopetition – high leverage, high marketing channel
      • His best way in is likely the portfolio companies under them – he looks for connections for new places and vouch for them
    • Naming Fidelity markdown of a bunch of companies – saying that private companies are being treated like they’re public companies
      • Realtime prospects that are valued – can go up or down, financing or not
      • Private crowdfunding to create liquidity, getting to cash flows and thinking about dividends, debt, crowdfunding – IPO bar is so painful
    • Fav book: Brothers Karamazov – Dostoevsky as “fiction bible”
    • Union Square Ventures as the one he looks up to – Benchmark, also (Read ebooks)
    • Concept of Founder-friendly – agency from founders holding them responsible, but becomes messy / complicated
    • Most recent investment at that time: CircleUp was series C, crowdfunding platform for CPG – other forms of financing for orgs will be transformed

Innovative Investing (Notes from June 3 – June 9, 2019) June 25, 2019

Posted by Anthony in Automation, cannabis, Digital, education, experience, finance, Founders, global, Leadership, medicine, NFL, questions, social, Strategy, training, Uncategorized, WomenInWork.
Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
add a comment

The primary theme of the week seemed to be how data can get pooled together to determine a signal and how to learn to seek the best way we, as individuals or teams, can discern valuable content to motivate actions on that information. Data is plenty – it’s a matter of gathering, curation, analysis and testing before putting it into action. This is done by any number and types of companies nowadays – this is a source of advantage seeking that forward-thinking ones make, in my opinion.

Since my notes were more detailed, I’ll try to keep this brief. The wonder people below hailed from banks (First Republic Bank), funds like Emerson Collective and Womens VCFund, marketing company like BEN or LikeFolio and then David Epstein’s Range, Sinead O’Sullivan’s work on space or the data Rohan Kumar collects with Azure Data.

Create a hypothesis. Test the hypothesis. Put into action, or iterate. Rinse, repeat. Good luck!

  • Samir Kaji, (@samirkaji) MD @ First Republic Bank (20min VC 093)
    first20republic20logo_gkg

    • Leading private bank and wealth management, before at SVB
    • 1999 – “anyone with a pulse could get a job” but he was working selling vacuum cleaners at dept store
      • Was told by family to get a real job – applied to first business SVB, got resume in and interview immediately before starting
      • First couple years were tough – learned a lot, but was 2004 until companies had scaled and were getting bigger
    • First 10 years were tech companies, series A and B and venture debt – post 2009 Lehman / Bear, went to venture group at SVB for 4 years
      • Made the move with a few others from SVB to First Republic, now leading team in micro-VC and early-stage tech co’s
    • Says the micro-VC is more entrepreneurial & collegial compared to extended stage VC’s
      • First fund is that you can get traction for a second or third one, fees as pressure – most likely why many people come from some wealth
        • Writing large checks as GP, as well
      • 2-2.5% management fees initially vs 1 / 25 or 1/30 model
      • 1999 – 2002 distribution was 0.9x and you’d get 10x return (whoops) – very difficult for funds to get 2-3x for LPs
    • Barriers to entry much smaller for $20-25million as compared to $500mln – institutional, etc — he can go to family friends and high net worth
    • Seed over next 5 years: contraction in space (wrong), but said there isn’t enough returns for funds to max it
      • 1100 in the 2000 year and burst
      • Continued prominence of Angelist platforms, maybe an integral part of the ecosystem
      • Starting to see use of data (Mattermark, CBInsights, SignalFire) to more efficiently identify and action at this level
    • Favorite book is Phil Jackson’s – behavioral psychology, Give and Take is another one
    • Really respects the pioneers of the industry and first-time fund-raisers
      • Mike Maples, Michael Deering, Steve Anderson, Jeff Clavier when it wasn’t a thought
    • Habit – reading book or blog post for 20min in the morning before email
      • Disconnect from audio / video devices and reflect for an hour
      • 2 hours a day for family/friends and disconnecting, as well
    • Thomas Redpoint, Mark Suster, Brad Feld, Strictly VC, Ezra at Chicago Ventures
    • Knows awesome fundraisers but terrible at returning capital – didn’t mention any
  • Collectively Driving Change, Laurene Powell Jobs and Ben Horowitz (a16z 5/27/2019)
    emerson-full-logo

    • LPJ – founder, president of Emerson Collective
    • Grew up in NJ – father passed away in a plane accident when she was 3 – 3 children.
      • Mom remarried so there were 6 of them. Wooded area of NJ.
      • Core values and dedication to education to get out of the area.
      • She went to Upenn – first student from her high school that went to Ivy League – ~20% went on to more schools
    • Addressing East Palo Alto school as a volunteer to help – 1st talk, 0 had taken SATs
      • What happens when you’re first to graduate high school? What’s it mean to the information from family?
      • What happens to be first to want to go to college, thrive&complete it?
        • To have the aspiration, can be a leader in the family – translator, get sucked into all problems
      • Started with 25 freshmen – would have to come with friends for responsibility mechanisms – for College Track
        • 3000 high school students, 1000 college, 550 grads
    • Collective of leaders, innovators – education inequities, access and need for enhanced/robust curriculum
    • 10 year time horizons – getting them together is scheduled with Monday all-staff meetings (3×3 matrix of videos)
      • 5 cities, sometimes philanthropic speakers or reports
      • Discussion of reading as you fall behind through third grade before switching to reading to learn – already behind
    • XQ as SuperSchool dream – 17 of 19 will open in August
    • Caring about impact and solving problems, not wealth increasing – wants access to policy or money and not taxes
      • Judged Giving Pledge for not wanting to be more philanthropic
      • Environmental, edtech portfolio, cancer / oncology investments, immigration incubator, new thinking to old problems
    • How do you know when you’re succeeding? Collecting data on everything they do.
      • Example: XQ – schools and districts, state of RI as switching to statewide competition
      • Chicago has good data for fatal/nonfatal deaths (I disagree)
    • Imperiled or important institutions like journalism and media need to be sustained, how many join?
      • Concentrating and following where IQ is migrating (hahaha – what a joke)
  • Data Infrastructure in the Cloud, Rohan Kumar at BUILD conference (Data Skeptic, 5/18/19)
    microsoft-azure-new-logo-2017

    • Corp VP of Eng of Azure Data Team at Microsoft – SQL and data services, open source, analytics, etc
    • Trends in data engineering in the cloud, serverless and hyperscale
      • ML and AI and enabling applications – shifting to edge vs cloud – analysts predict 70% will be on edge devices
      • Solutions and private edges – training in the cloud and deploy them on the edge applications
        • Data platform needs to be the right foundation
    • Highlight for him from conference: work they’ve done on relational databases in the cloud – as volumes grow, scalability challenges
      • Hyperscale for Azure and PostgreSQL, as well as MS SQL soon enough – system scales with needs (they’ve tested <= 100TB)
    • Acquired Citus Data, support scaling out the compute layer – strong team, great product, matches in Azure and open-source
    • Releasing serverless option for Azure database – costs designed to stay low and optimized
    • Analytics side: customers wanted to do real-time operational analytics – didn’t want to move them outside of their core product
      • How is data distributed and having compute be co-located with the data to gain Spark efficiency being nearest to node
      • Support Jupyter notebooks across all APIs to modernize to do more predictive analytics
      • Attempting to build out pipelines requires too much scripts, instead have Data Flows in Azure Data Factory – no-code and UI
      • Wrangling data visually and seeing if something can be recognized or learned to repeat across other columns/tables
    • Latency won’t be ideal if compute nodes occur nonlocal to the data changes – can’t do 50,000 nodes all at once
    • Excited for the future: Horizon 1 (next 8-12 months), Horizon 2 (~3 years), Horizon 3 (moonshots)
      • H2: Hardware trends, what do customers want? Pushing boundaries of AI and ML, healthcare, gaming, financial services, retail
  • Wide or Deep? David Epstein, author of Range (Invest like the Best, 5/28/19, ep. 133)
    • First book’s research lead him to get into specialization and finding kernel for next
      • Some countries: turning around national sports teams – why don’t we try other sports? Contrary to 10,000 hour rule.
      • SSAC – debating Gladwell – athletes have a sampling period instead of first gene – delay specialization
        • Used Tiger vs Roger – Roger had tried a ton of sports vs Tiger who was born and was playing golf
    • He was not good at predicting what people/public would attach themselves on to – 10,000 hour rule – race/gender as most talked (but weren’t)
      • 10,000 hour rule were based on 30 violinists in world famous music academy (restriction of range)
      • Height in American population vs points scored in NBA (positive correlation) but if you restrict height to NBA players, negative
    • Finnish cross country skier who has genetic mutation similar to Lance’s boosted
      • Sensitivity to pain and modification to your environment – also sudden cardiac arrest in athletes (what pushed his interests)
      • Book as opposition to Outliers and Talent Code – interpreted a lack of evidence as evidence of absence (genetics matter)
        • First year he read 10 journal articles a day and not writing – they were making conclusions they could not make based on their data
      • Differential responses to training – best talent were missed because we don’t know about training responses
    • Collection and exploration phase – competitive advantage for expansive search function to connect sources or topics
      • Has a statistician on retainer, essentially, to check models or surveys
      • Wanted to know what he was missing – “how come I broke the 800m women’s world record after 2 years of practice? – genetic difference”
        • Racing whippets – 40% had a genetic defect that gave them more muscle and oxygen
    • All of sports as a limited analogy (problem after Sports Gene; now, more tempered)
      • Robin Hogarth addressed “When do people get better with experience?” Don’t know rules, can try to deduce them but can’t know for sure.
      • Kind learning environment: feedback immediate, steps clear, information, goal ahead
      • Wicked learning environment: can’t see all information, don’t wait for others, feedback delayed/inaccurate
    • Study at Air Force on “Impact of Teacher Quality on Cadets”
      • Have to take 3 maths – calc I, II, III (20 kids randomized) – professors best at causing kids to do well (overperforming) systematically undermined their performance thereafter
        • 6th in performance and 7th in student evaluations was dead last in deep learning
        • Narrow curricula were better at the test that they had at the end would be negatively correlated with going forward in performance
      • Teachers that ignored what was on the test taught a broader curriculum (making connections vs procedures)
    • Learning hacks: Testing (wonderful – primed to test ahead of learning), Spacing (deliberate not-practicing, Spanish ex spread 4 hour twice, 8 hours), Mixed practice
      • Ease is bad – known time horizon for when you have forgotten again – interleaving and spacing mixed
    • Passion vs Grit (“Trouble with Too Much Grit” – Angela Duckworth’s research)
      • Duckworth did a study at West Point for East Barracks cadets – candidates score (test + leadership + athletic) was not good prediction of doing this (overall it was good)
        • Grit was a better predictor for making it through East Barracks – she questioned whether it had an independent aspect
        • Variance for grit was probably 1-6%, especially after “flattening” groups – looking at people that had a narrowly defined goal for short periods (cadets or spellers)
      • Cadets were scoring lower on grit at late 20s vs earlier – tried some things, learned others about what they want – grit is poorly constructed
        • Look holistically – if, then signatures (giant rave – introvert, small team – extroverts) right fit looks like grit – developmental trajectory as explosion matching spot
    • Choosing a match for a future them who they don’t know in a world they can’t comprehend – people that find good fits (in practice, not theory)
      • Paul Graham’s “Commencement Speech” that he wrote “Most will tell you to predict what you want in 20 years and march toward it.” (premature optimization)
        • Everything you know is constrained by our previous experiences – limited as a teenager – just expanding and learning as you go forward
    • Gameboy example – with so much specialized information that can be disseminated easier – can take from all types of domains and recombine them
      • System of parallel trenches – can be broader much easier now – hired people for Japanese and German translations
      • Japanese man profiled in his book – technology was changing faster than sun melts ice – didn’t get Tokyo interviews
        • When he got to Kyoto company making playing cards, he was a tinkerer who was maintaining machines – started to mess with them (arms)
        • Turned them into a toy, and it was Nintendo – cartoon-branded noodles (failed), and had toy development
          • Lateral thinking with withered technology – stuff that’s cheap, easily available – takes into other areas
            • Remote control, more features – wanted to democratize this and strips it down – LeftyRX only left-turns
        • Sees calculator from Sharp and Casio and thinks he can do a screen and handheld game – small games
          • Had issues with Newton’s rings so he found other small tech (credit cards embossed) to fix small pieces
      • What it lacked in color, graphics and durability (could dry it out, batteries would be fine, split it up, “app” developers because it was super easy to understand)
      • In areas that next steps were clear, specialists were much better – less clear, generalists were more impactful – depends on the specificity of the problem
        • 3M had a lot of areas for this, “Periodic Table of Technology” – post-it note came from reusable adhesive that had no use for
        • Only Chinese national woman to win Nobel – “Three No’s” (No post-grad, foreign research, membership in academy)
          • Interest in science, history – Chinese medicine for treatments of malaria – world’s most effective treatment from ancient text
  • Greg Isaacs, BEN (Branded Entertainment Network) (Wharton XM, Marketing)
    Print

    • Discussion of getting data from Netflix / Amazon / Hulu / tv to better match brands and advertising
      • Dirty data via a wharton grad who set up a survey style
      • Cohorts and demographics, along with psychographics
    • After getting data, attempting to approach Youtubers / social media influencers, tv spots and channels or shows to get their brands in front of the right people
      • More pointed, depending on what interests are for their cohorts
      • Creative storytelling as the change of cultural mind shift has increased
  • Understanding the Space Economy, Sinead O’Sullivan (@sineados1), entrepreneur fellow at HBS (HBR IdeaCast #684, 5/28/19)
    • Facebook, Amazon (3000), SpaceX (12,000) and other funding like Blue Origin / SpaceX / asteroid mining or travel
    • Global space economy as $1tn by 20 years – currently $325bn so it would need to 3x
      • Breaking apart space resources and otherwise – earth-focused (delivering or existing in space that helps earth)
        • Exploration or creating interplanetary existence
    • Running out of space in space for satellites – comparing to airplane docking / loading
      • $2500 per kg now to launch, used to be $50k / kg
    • Reliance had been on unilateral agreement for space policy – one tech startup launched a satellite that didn’t have permission (but no fall-out)
      • Food / grocery stores, wifi, phone, insurance pricing due to satellite data – reliance on services are increasing as the market increases
      • Thinks that we’re close to seeing the cheapest cost of launching – cites SpaceX, but won’t allow everyone to participate
    • Ultrahigh accuracy will require higher powered satellites – GPS, nonmilitary grade is ~0.5 m – thinks it will prevent autonomous vehicles solution
    • Ton of money going into asteroid mining but thinks it’s better for testing missions to Mars and figuring out the problems for future
      • Looking at Uber at start and say “people won’t get into a stranger’s car” or other cases as how we see the future – going to Mars, etc
    • Earth-focused space technology – 100+ launched satellite start-ups, micronano satellites, relay companies, downstream analytics
      • More touchpoints for everything in this manner
      • SpaceX will increase public and government intervention and within 50 years, maybe see a human launched there
  • Investing w Twitter Sentiment, Andy Swan (@andyswan), LikeFolio (Standard Deviations, 4/25/19)
    logo402x

    • 1700+ tweets examined per minute in LikeFolio – discovering consumer behavior shifts before news
      • Direct partnership with Twitter to create massive database and how they’re talked about to look for mentions
      • Purchase intent, sentiment mentions – trends across product categories or brands
    • Example – Delta (as host is a loyalist) – making adjustments
      • Expectations are the relative part – comparison to the baselines (metrics compared to itself as baseline)
    • Put out a comprehensive report on Apple day after keynote event – September 14, 2018
      • Consumers were unimpressed with iPhone lineup – more price sensitive than maybe they’d considered
      • Apple Watch was the silver lining – stock / sales may struggle over 3-9 months (upgrade cycles)
    • WTW version of keynotes – NYE resolutions – subscribing early to drive revenues the rest of the way
      • Purchasing mentions were only up 30-40% compared to 5 or 7x weekly mentions (big difference)
    • Shelf-life and how to consider the sentiment data – lead time may be binary corp event (same store sales or year)
      • Couple months with Apple, for instance, but with Crocs – resurgence that persisted to current time
    • Set up keyword structure and brand database – “I’m eating an apple” as opposed to an Apple mention – human eyes to ‘label’
      • “Closed my 3 rings” – apple watch but sarcasm / spam that wasn’t caught (estimates at 2-3% of data)
      • If spam / sarcasm are consistent portions of the data, doesn’t really have an effect
    • Twitter Mood Predicts Stock Market – Bollen, Mao, Zeng (88% and 5-6% predictions) – fund closed up shortly
    • Advantage being better than analysts or pricing and codifying sentiment behavior compared to past quarters, data
      • Some consumer trends analyzed as true tipping point or actual movements
      • Public prediction before productizing their modeling – made 40 and were 38-2 (confidence as highest)
      • Investing as very specific, concentrated and holding ammo compared to trading with option spreads and has risk profile built
    • https://arxiv.org/pdf/1010.3003.pdf
    • Diversification as 20-25 stocks, doing it over time and with conviction can be done
    • Starting in Louisville for his fintech company, host in Alabama, for instance
      • Talent can be more difficult to seek out but the world is globally flattening via the internet
      • 70% lower overhead cost than being in SF, for instance – developers would anyhow be in Slack channels / not a big deal
      • Reduction in cost maintains greater control of company since they don’t have to take reduction of equity to gather more
    • Network effects don’t matter if you don’t have a great product or product-market-fit
    • Free association game
      • grapenuts: best cereal (Co’s been around for 100+ years, branding and $ spent and they can’t figure it out)
      • Fintech Future: individualization and customization
      • Victory: most important thing in life, achieved what you set out to do – setting goals and achieving these
      • Bourbon: pappie von winkle – collecting for dust on shelf 10 years ago and now going for $3000
  • Jonathan Abrams, co-founder Nuzzel news (Launch Pad)
    nuzzel

    • Landing hedgehog as the mascot – animal as cute, 99designs and surveying 50 friends – 25 men/women
    • Discussing how VC’s don’t have great advice, especially when general – too hard to be an expert in such a wide range
      • Finds it easier to be very context-driven and providing solutions or action-oriented questions to founders
      • Investing now easier with YC and Angelist, etc…
    • Timing and other mistakes he made – out of control, losing equity part early (but depends on where you are / what you need)
  • Etan Green, professor at Wharton (Wharton Moneyball)
    • Discussion on paper of how sharp money comes in at horse racing tracks
      • Difference between sites – fairground action compared to tracks, and specific to region (New Orleans, Minnesota, for instance)
      • Big sharp money comes in very late, pushing the underdog prices to higher values
        • More expensive to bet while at the track than the APIs enabling higher volume bets
        • Books at the track are incentivized to bring in as much $ as possible, so $0.20 on $1 vs $0.15 rebate on $0.20 for volume
    • Value and differences in how people will bet
  • Edith Dorsen, Women’s VCFund founder, MD (Wharton XM)
    wvcfii_logo

    • Talking about their focus on first fund, approach
    • Opportunity for finding diverse founders, 25% of their fund had a woman founder
    • Starting a second fund
    • Had consumer tech, enterprise and not so much b2b, but trying to increase
      • Hard to say or give advice if one of their partners don’t have expertise in the domain
  • Sophie Lanfear, Silverback Films producer on Netflix “Our Planet” (Wharton XM)
    • Species that are dying, going extinct
    • What we can do about it
  • Aliza Sherman, Ellementa co-founder, CEO (Wharton XM)
    logo

    • Discussion of client talks when she made them aware of her cannabis endeavors
    • How friendly the community is
      • Then knocked the idea that ~30% was female to start before diving off a cliff
    • CBD to mask opioids – does it really do anything from a pain/treatment perspective, though?
      • Anti-chemo because of CBD – really?
    • Sounded too rehearsed – made it sound fake, not genuine
      • Passion/motivation/mission and kept repeating as the best advice she could give – painful

Dissecting the B2B and B2C Models(Notes from April 29 to May 5) May 23, 2019

Posted by Anthony in Automation, Digital, education, experience, finance, Founders, Hiring, questions, social, Strategy, training, Uncategorized, WomenInWork.
Tags: , , , , , , , , , , , , , ,
1 comment so far

Here we see a few longer episodes to discuss investing into different biz models. I listened to a collection of founders that started funds, did a bunch of investing, bet on themselves, worked hard and ultimately caught a few breaks in spaces that were extremely unconventional and some that weren’t.

Keith Rabois – if you don’t know who he is, I’d strongly suggest looking up some of his work – went over the differences he sees as an operator compared to being an investor. What do you want to focus on in each position and what competitors to focus on.
David Frankel is another current MP who started by building and exiting his own companies. His discussion focused on how he tries to align founders and investors at the early stages of start-ups – how he frames this to be most productive. His secret though: following the founders, themselves, and trusting they have ideas that can carry ideas.
Another MP at Founder Collective is Eric Paley – though he came from the biotech space before joining.

Amy Frederickson was a fantastic listen on the Business Radio channel. Taking second hand, vintage items and giving access to others who see beauty in them. She connects contractors in upholstery and sourcing furniture that may not be seen for what it could be and connects them with those that may have great use. I’ve heard similar stories to this being done in the second-hand space like boutiques or even goodwill – connecting foot-traffic-primary stores to the internet and allowing everyone a chance at these creative, hand-picked items.

Angela Bassa was on DataFramed talking about her managerial experience in the exploding data science field (and before). How she’s had to adapt, how she treats peers and effectively communicates – all very useful in discussion of solving the right problems in an organization.
This was a great segue for me into another a16z episode on decision-making. How to ask the right questions and ensure you get a sufficient answer. Mining the proper data for it and turn those into insights.

To finish up and not make the intro super long – I kept notes on a few other investment managers and the differences in strategies for different clients, investors and the framework for posing performance in the right light.

I hope you enjoy the notes and please check out everyone’s episodes!

  • Keith Rabois (@rabois), Inv Partner at Khosla Ventures – If You Can’t Sell Them, Compete With Them (Invest Like The Best – 12/18/18)
    investors-khosla

    • Investor, entrepreneur at Paypal, Square – investments in AirBnB & Palantir, Opendoor
    • Paul Graham’s “Clients too stuck in their ways, compete with them” – when a person doesn’t want to take advantage of tech
      • Creating money, vertically-integrated business – build the platform (adoption risk, sales cycles, economic issues for being reliable on others)
        • Provide end product to customers
      • Quintessential example as Apple – control component to create user experience – derivative product doesn’t control own fate
    • 7 Powers – book for strategic leverage
    • Irrational for the 2 guys in the garage – has to be unexpected reaction to market, team, etc — but can’t take over from scratch by following ‘playbook’
      • He’s in the business for investing in a top 100 company
      • Strategic leverage should be that the accumulated advantage should be easier – skill / talent ability normally degrades
      • Anomalies give you insight into a paradigm shift (can’t get 10x growth from UI, etc…) – end of why questions should be incrementalism
    • Secret is a belief system about the world that others don’t appreciate it – time determines if it’s true or false
    • Home as primary home as more a commodity than an art – touch/feel. Not works of art.
      • Focuses on digital health, where data is abundant. Network effect there.
      • References – take Opendoor – could make an offer for house that’s fair but you’d be uncertain with money or closing on time
        • Knowing people will make the credibility factor easier – trust matters by vertical/industry
    • Paypal had a $100k guarantee for the $ – partnered with Traveler’s Insurance as trusted brand, and used FDIC for insurance up to $100k
    • Healthcare costs ex-LASIK seem to be going up – mediated through payers (ins co’s)
      • Can improve UX, reduce cost and improve quality at same time with technology enabled – Guardant Health with liquid biopsy
        • Made it significantly cheaper to get biopsy results
    • Giving founders feedback on what they’re doing – how are they liking what they’re doing
      • As an operator, needs to make a 70% conviction and decision (as an investor, he needs to be in the 10-50% suggestions)
      • Assessment of talent is similar and understanding tradeoffs may be both of operator/investor
      • Risk profiles are different – understanding as operator where the strategy changes over time for the company (investor may be 0x to 10x)
      • Investor gets paid to learn new things, try new things – much more like baseball
        • Operator, conversely, may be like football where you should try things but need buy-in from others with your team
    • Lean start-up as stupid idea – cohesive strong strategy that can be done with less capital
      • Product-market fit isn’t required for validating fixing an idea / postulation (fat start-up – $10mil to fix real estate, for instance)
    • Steve Jobs mentioning saying No to good ideas (10% ideas) vs the 10x ideas – need experiment to get to that capability
      • Bad ideas in venture: lots of failures – 30% in baseball is good
      • Why does nobody emulate Apple or other successful companies do? Avoid the failure mentality.
        • Obsession about design and practical thinking – not empirical thinking. Book: Creative Selection
    • Interview question:
      • If you are a product, how would you describe your value proposition? – initially had product instincts – wasn’t world class, but knew business
    • Founders want to affect the real world – computer was escapist initially, but now it’s a controller for the real world
      • New capabilities / opportunities, lots of people leverage that for positive behavior, so now he says there are more ‘hard science’ innovation
        • Healthcare, biotech, autonomous, etc…
      • Early stage, pricing matters less because you just need to be correct directionally for the company, not so much off
        • How much, though, is risked by industries or risk/reward – what’s on table?
        • Later stage matters more for balancing portfolio.
    • Learning through osmosis with someone that’s very smart
      • Calling people to get feedback on certain ventures based on other talented people’s responses
    • Is there high-growth startup ex that hit escape velocity that a large competitor has beat?
      • Being paranoid is smart, but focused and talented team will out-execute a large entity
    • Narrative violations – common being fake news – average American is more informed than any other American in history
      • Average American is more informed than any other person in history, by orders of magnitude
      • Interesting question: given the resources, is the person smarter or dumber than what they used to be? Voter more/less informed?
        • Accessibility to products is so abundant now – anyone can Google or find other information
          • Definitely true in the US, maybe harder for other areas in world
      • Platforms are now more democratic versions of printing presses
    • Different components to acquiring and learning skills (athletes as needing to do, guitar probably playing songs, surgeon both reading/dexterity)
    • Most investors forget the lessons of strategy, he thinks – differentiation is your friend (mentions YC as having different mentality, economics)
      • Not much pioneering at VC level – Horowitz (and his autobio) initially, but not much innovation since – Khosla, Lux as vertical integration, maybe
      • Midlevel manager of engineering can be efficient from recruiting standpoint – what level you’re at, where you can pick from 350 companies (to 10)
    • Upside of Stress – book that’s very important, he believes — more stress and tolerating it is how you can be more successful
    • Things that stick with him – how they remember how others impacted him or vice versa, little things
      • Cascading of good/inspiration & how it changed trajectory – rewarding
  • David Frankel (@dafrankel), MP at Founder Collective (20min VC 088)
    f9bf1622-04df-11e7-a9d6-0242ac110003.founder-collective-logo-black-tinypng

    • Founder, CEO of Internet Solutions (ISP provider in Africa) then became a super angel
    • Founded FC with his partners for seed stage investing
    • Graduated 1992 in Elec Eng undergrad – IS acquired eventually for $3bn in mid-90s
      • Was doing ventures with FCF, made many huge mistakes, he said and remained on Board for acquiring co
      • Went to HBS – hated first 3 months but then graduated in 1993 – b2banking, b2consulting (jokingly) – but met a ton of great people
      • With capital, could back almost all of his classmates starting (first or entire checks) – had 27 companies after graduating
    • Challenge for FC was to ask how to institutionalize seed stage investing?
      • Not a lifecycle fund, just seed stage – may follow in Series A (not as lead), but hadn’t through the first stage
      • Wanted to create most aligned fund with founders – not net buyer when company is net seller
      • Believe they can make the most difference up front but not as they go forward
        • Who can be first hires? Management team gelling?
        • 2 years in, he says, they become much less useful – happy to be on board or pull off
    • Working with Chris (over at a16z) – says it’s a waste of time to look at incremental
      • Chris pitched 2 ideas before Site Advisor
    • For people not in the network – David loves hanging out with people and is very curious
      • People default to what we love doing – have to enjoy hanging out with them
    • Invested in Uber but he didn’t know in a million years how that would have been predicted on what they did
      • In the moment – Groupon just completed $5bn round and they were invested
        • Was excited about a competitor in Korea as he liked the founder, even though he believed it was “house of cards” industry
    • Comparing engineering student to business school – eng 1 in 1000 idea is Facebook, but volatility very high – business school lower volatility
    • Term Sheet as read blog, uses Twitter / TweetDeck to curate lists
    • Typically anti-sector because he follows founders moreso than industry specifically
    • East Coast vs West Coast (center of universe) – output of talent from Boston and east coast is different
      • Depends on types of company (consumer / mobile is Bay Area-centric) – Boston good for tech/biotech
    • One of favorite portfolio companies-PillPack in disrupting pharmacy & something simple
  • Amy Frederickson, Founder of Revitaliste (Wharton XM)
    revitaliste_3

    • Vintage furniture in interior design space – making it very simple to reupholster or otherwise refinish furniture
    • Discussion of her partners on the furniture side – volume doesn’t necessarily make it better if they can’t do more work / spend more hours
      • Limitations that she’s had to be careful – try to change mindset and buoy them
  • Eric Paley (@epaley), MP at Founder Collective (20min VC 089)
    • CEO, co-founder at Brontes Tech before acquisition by 3M for $95mil
    • Started a web developer company with brother and cousin in 1990s, had a bunch of startup clients and others that weren’t
      • Abstract Edge – still run by brother/cousin, but when the dotcom bust happened, sees overconfidence
      • Bad times – may learn better – he wanted to go to biz school & learned a ton
      • Looked at 3D imagery while in business school thru MIT partnership – interesting and looked at the space – had to ask “What to do with it?”
        • Facial recognition, industrial inspection, endoscopy, video games, etc…
        • Late in game, struggled with money raising and decided to look at dentistry (mass customization – every orthodontic device as singular/unique manufacturing, dental impression but if you could change this, you could have a lot)
    • First investor was David Frankel (from before – $500k into Brontes)
      • David calling and say “Thought the founder liked me but would you mind doing reference call with them?”
      • “Can you sit down with the entrepreneur and let me know what you think? – I’m out of town for 2 months in South Africa, so I trust you.”
      • Started to look for deal flow for David while he was out – with the other guys
    • As he was looking at leaving 3M, he was talking to venture companies and saw that top quartile VC’s didn’t feel like they were doing as well as they had
      • Came together with the 4 partners and should start a fund – underlying premise with better alignment at seed stage
      • Pro rata doesn’t align founder to venture – founders don’t get the option if they’re not doing well
        • Dollar average up cost-basis vs down. $8, 10, 15 million valuation vs $30, 50 or 100 million – but it’s more along the average dollar
          • Weighted later with pro rata investing
    • Believes there are plenty of seed funds that are doing well, but he’s surprised by the limited amount of funds that stick to seed stage
      • Conventional wisdom / FOMO for lifecycle / follow-ons
      • They have 3 unicorns at that time as well as a lot of good returns outside of that
    • Fooled By Randomness – NNT book as his favorite applicable to VC, frameworks for tilting the probability
    • Founder role model for him – said he was lucky to have Kelsey Worth, founder of Invisalign ($1bn company in 5 years)
      • She was on the board, would come out a day a month and help him out – dive deep and give an opinion without being dogmatic
    • Mentioned a recent investment as Cuvee – attempting to increase wine storage / pourability to 30 days
  • Angela Bassa, Director of D/S at iRobot (DataFramed #48 11/12/2018)
    irobot_green_logo

    • Managing D/S Teams and how to organize development of algorithms and the processes
    • Corporate business organization of data science teams vs packaging and product building or open source work – known for more of that
    • Undergrad in Math, went to Wall Street after – got a lot of data analysis in the market, wasn’t a match for her ~15 years ago
      • Then went to strategy consulting – focused on pharmaceutical strategy, testing and experiment analysis
      • Went to marketing services industry – finally saw big data – (no longer any single machine work)
    • Talked about excelling as an individual contributor and moving to management as a different discipline in itself
      • First person she managed: quit the first day, had been a PhD graduate and assumed he was working with her, not for? (What a prick?)
    • Worked with teams in ops, finance, IT, engineering, R&D, etc…
      • Re-orgs for data science portion – always changing branches
      • If data science isn’t the product, within legacy/corporation, the team needs time to figure out the objective of the organization
        • Get past exploration and become experts
        • Her take on managers would be that they create space (o-line) for individual contributors to do their work as quarterbacks
    • As teams grow in size over time (using her experience as Manager and Director from ground up), potential vs low-hanging fruit
      • High visibility and high sophistication to give a leg up on what could be possible for the organization – low-hanging fruit is easy
      • Starting data science team have generalists but very good to mature into a better team, specialization
    • Humility for data scientists – avoiding the correlation factors that you build from gathering and going through data initially
      • What kind of questions should be answered?
    • Parts of data science that you can’t teach – how vs wanting to answer questions
      • Certain bootcamps are worthy of what they teach, organize – mentioned universities as not having programs until recently
        • Mentioned a team member trained initially as marine biologist – traveled and researched pods of dolphins
          • Modeling expertise for a fleet of robots as operating independently and together
    • Harder for C-suite to not be able to talk data in the strategy sessions for decision making
      • Common pitfalls of manager:
        • Data team doesn’t know how the data is gathered or where all it’s coming from
          • Have a data party or something to organize the data creation, designed, labeled, and stored
        • Not overpromising or underpromising
          • Lend credibility to actual outcome – being honest, transparent with other disciplines to interrogate situations
    • Her paper for HBR – Managing Data Science for AI
  • The Future of Decision-Making (a16z May 1, 2019)
    • Frank Chen and Jad Naous (via YT initially) of Enterprise Investing team
    • Digital transformation where industries are shifting to this design
      • Changing from manual to automated, digital processes and more agile
      • People’s roles will start to shift around – demand for new tools and dynamics for who wins in spaces
    • Product management – features or bugs would have been surveys manually or collecting data to figure out problem and sort them all
      • Now, the tools automate these from the product itself, often – now they can look at the dashboard of numbers
    • Marketing side: Growth hacking and market engineering – low cost to increase growth in certain parts of customer segments
      • Decision-making and creative work is the human part that can’t get automated
      • More people in the middle of the enterprise are becoming analysts – BI tools aren’t going to be enough
    • Types of tools should be operational tools that give answers to questions that they need immediately
      • Where is the bottleneck in the funnel? How to eliminate?
      • Competitor is having a flash sale – how much revenue is impacted or what segment should I target?
      • Generally, analysts would have to spend time and $ to get an answer (“$10mil to get a report that you didn’t need in the first place.”)
      • A/B test has to be continually monitored
    • Jad worked at AppDynamics – one of easiest things to sell is Performance Monitoring Tools – prevent systems from going down
      • Harder to prove ROI to other orgs – sales, marketing if they need continual results / ongoing
      • Want to have self-service tools vs full-service from someone else
      • Not analysts but instead the functional operational people – marketer, growth hacker, product manager, business people
    • AirBnB already open sourced SuperSet – ad-hoc access to data for results, used by 100s co’s – presentation layer product toward technical
      • Imply (one of his investments) for analytics and processing layer – store streaming data into database and do the analytics / presentations
      • DataBricks – processing layer
      • ETL layer is the one that has not gotten traction – domain specificity (healthcare vs ride-sharing or finance)
        • Currently too much integration issues and organizing
    • 3 categories – operational intelligence – sell tools for incumbents to enable intelligence
      • Target csm or sales or product manager (crowded currently, hardest to win)
      • Segment-focused vendors – sensors and analytics to oil & gas companies, for instance
        • Vertical solutions for industry
      • Vertically-integrated, operational intelligent company that competes against incumbents – Lyft / Uber, AirBnb, etc…
        • Biggest value but hardest
    • Non-IT buyers: Grocery, Construction, Oil & Gas – operationally efficient and commoditized as long-standing business
      • Minimal change in efficiency can be a huge value (Costco at $12.5bn ’17 on 11% margin)
      • Capital deploy for Exxon Mobile ($230bn capital invested, ROIC 9.5%)
    • Particularly excited by SuperSet, Imply – infrastructure tools – people seeing analytics and tools as necessary for business
      • Software vendors into large, existing industries – hardest would be economic profiles will be very different
      • Selling into stagnant markets (minimal margin) and not used to new tech – cycles will be long
        • Huge businesses to get in
      • Need to educate/prep investors – really bright light at end of tunnel
      • Need to become experts and trusted advisors in the domain
      • Help with software and services in the industries
  • Josh Wolfe (@joshwolfe), founder/MP at Lux Capital – Tech Imperative (Invest Like Best, 4/23/2019)
    rwtxa-v4_400x400

    • Tackling massive scale problems – China as infrastructure power vs the states
      • State or story-sponsored role becomes more powerful with internet-enabling
    • Checklist of 5 main things (Xander of GoPro, now SurveyMonkey)
      1. Nail down the strategy of company – what are you going to do?
      2. Deliver capital to pursue strategy – clear, cohesive and sell
      3. Brilliant team to execute, drop others to start mission.
      4. Communicate the hell out of it – partners, competitors, media, press – keep consistent answer.
      5. Hold people accountable – if people aren’t and the goals aren’t clear, not effective organization.
    • Story – memorable, easy to repeat, conveys meaning in a clever way
      • Want to elicit an emotional reaction – putting meaning in a story for an individual
      • Portable ideas as superpowers – leaders being able to harness this, or the audience (maybe of the shared values)
        • How to aggregate the ideas
    • Abundance of liquidity to illiquidity or leverage (eg $200mln check in growth-equity round at $1bn (from $100mln) but if down-round, then the check has a big stake in it as creditors)
      • LPs and endowments are overextended – he’s telling people to look at secondaries, not venture
      • Sequoia was appealing to greed – sop it up and have to write bigger and bigger checks (get a big fund and put to work)
        • SoftBank as big problem pricing up rounds – either visionaries or producing paper assets as collateral against debt
        • Tesla as horrible balance sheet and illiquidity
    • Zoom doesn’t need to need a big business, but Uber/Lyft depends on strangers and investors to buy in to future
    • TurboChef (fast like a microwave but toasty like toaster) – Subway vs Quizno for $4k ovens
      • Sell to Subway – 20k places for purchase orders – but they got Coca Cola to buy the contracts for Subway in exchange for them to be in the stores
      • LatchAccess (one of his co’s) – remote by cloud from phone to consumer
        • New build and buildings (now 1 in 10) – did contract with WalMart / Jet
    • Some firms get lucky and parlay it into success – maybe wrong in process
      • What was process? Where did you get lucky? Where were you smart? How did you structure deal?
        • Benefit you, founders, investors
      • Price vs intrinsic value – public doesn’t do this, but path-dependent in portfolio (repeat entrepreneurs)
        • Team vs sole GPs – total equal partnerships and all mixes
        • Portfolio mix, super early stage, low probability of high financing risk
        • Others who are good at metrics / business, growth metrics
        • Subsector – fintech, crypto, etc… as experts
    • Tribes with a mantra
      • “Life sucks” – gangs, people homeless
      • “My life sucks” – 9-5 and get home and just crack a beer and grow for that
      • Like what they do – “I’m great, you’re not” – silo information, zero-sum and leave as free agents
      • Lux as “We’re great, they’re not” – robbers cave – how to get people to bond vs competitor / enemy
        • Sometimes it’s an entity – exogenous threat, devil – big oil, martians
      • Ultimate “Life is great” – mission driven, maybe Google / Facebook initially – cause/effect of money
        • Still climbing mountain, goal to reach – complacency maybe
    • Judgment: should we be disciplined about price?
      • Andreesen said only 10 good companies but you want to be in each one – but there are 1000s of decisions to be made
        • Pay any price for the ‘best’ or be discriminated – lead to FOMO and price action
        • Mentioned Cruz and setting up GM deal ($20mil at $60post vs $20mil at $80post, but GM came in and paid 11x)
      • In private markets, if you rejected them, you don’t get another chance.
    • Values: observable around morality (tech around morality and morality around tech)
      • Existence of an option is a good thing – military as a hot topic, tech as both sides affected
        • Had invested in Palantir offshoot for virtual wall for Homeland – has lots of immigrants who were deeply affected
      • Drone options or even autonomous driving (say, those who die as organ donors for the donor list)
      • Compares China’s pipeline from government to technology – decisive advantage will let them be ascendant
        • Moral discussions slow this down – barriers to experimentation
      • Real value of CRISPR isn’t the feature, but what it leads to in the platforms (ex: X-Men / Cerebro – Variant for rare populations)
        • 23andMe and Ancestry as targeting the ‘boring populations’ vs what they’re doing
          • 1000 individuals for rare conditions that have a metabolic rate that raises in the evening – what if this was monogenic / targetable?
    • Sci-fi vs Sci-fact as narrowing — ‘it will rot your brain’ as doing the next $10bn+ industry
      • Mentions engineers and Fred Moul (founder of Intuitive Surgical) starting Orace – just betting on him to recruit the right people
        • $8mn at $20mln valuation – for 5 years $90mln forecast and $450mln – then got a bunch of investment)
          • Exit for 63x for $6bn to J&J – completely flawed process on an order of magnitude
    • Directional arrows of progress if spotted increases probability of success on subsector
      • Lighting: burning flame -> bulb -> led; memory, energy density
      • Talked about Calliopa – he wanted to focus on gut-brain access – taste / sugar receptors (Charles as Chilean professor at Columbia)
        • Half-life of tech: 50 years ago, 25 years ago personal computer, 12.5 years ago laptop, 6.25 years phone, 3.5 iwatch, 1.5 airpods
          • More intimate over half-life and improved
        • Had to meet “Rearden” – “I can get rid of that” – Bill Gates’ right hand guy, polymath, PhD neuroscience after undergrad as Classics/Latin
          • Put on wrist strap that could detect 15k neurons that innervate the 15 muscles in your hand – perfectly model this
            • Can control it just by thinking of turning on whatever you’re speaking of
          • We don’t have input problem – we have output problem — too linear
            • Series A and Google/Amazon invested $30mln – want to sell after maximum value
      • Do you find companies that touch near the directional arrows?
        • Don’t need to implant in brain, can read the neurons – 5 years ago you didn’t have everything that was required – power, IoT
    • Moral imperative to invent technology, instruments to invent genius – encounter the technology that eventually inspires others
      • Losing touch with humanity – where is the song after sung? Find way to reduce human suffering.
    • Are there enough entrepreneurs in real technology frontiers? Is vs ought (jokes about competition)?
    • If you can spot “What sucks?” – can you discover something “Wait, what?”
      • 100mln mice – can’t you put sensors/automation for this?
      • Document storage (Mushroom vs atomic storage, not REIT for storing docs) – banker data, scan them – IronMountain can’t do it
      • Entropy information – he gets more optionality by giving information, but death of privacy is coming with convenience
        • Mentioned graphic novelist “Why the Last Man?”, side one called “The Private Eye” about everyone being surveilled – wearing masks
        • Socially and personal privacy is a losing battle but industrial side makes sense
        • Mentions blockchain for voracity – Banksy for private store (analog), authenticity
    • Special operations spending time for 2 weeks – Asia: Philippines, Thailand, Malaysia, Singapore, Japan
      • Coalitions forces, training, sniper, subsea, Seals, cutting edge tech – able to look at things for laser targeting
        • He was there for “What sucks?” – humbled by voracity, proud by the intelligence and what he could do and who he was with
      • Optical signals for those that get through program are the opposite of the big guys – stunning, talented, quietness “stoic intensity”
  • Ayan Mitra, Founder, CEO at CODE Investing (formerly Crowdbnk) (20min VC 089)
    webp.net-resizeimage-16-640x321

    • Enterprise architect and tech mgr, worked with M&S, Orange, and First Direct
    • Software eng by trade, started in mid 1990s and built internet framing for Bank Offers Direct
    • Was in NY when Kickstarter kicked off in 2010, and saw the regulation was ready for this type of investing
      • Made the concept popular, regulated funding, or Kiva-type – early stage investing is a lot more popular in Europe/UK
      • JOBS Act as regulation freedom for positive step for alternative financing
    • Wave of changes where technology is being brought on the systems and the benefit goes to the investors and markets
      • Quick and transparent – believes it would’ve happened regardless
    • Crowdbnk – reactively do due diligence, price and valuations – invest alongside with investors on their platform
      • Look to raise growth capital for equity and debt – not a pure platform/marketplace
      • Minimum / maximum – equity looking for $500k – 2mln pounds, debt – secured/asset-backed $1ml – $5mil
        • Investors – $10k pounds a year to be diversified and properly investing
    • Valuation class by Ashwin (NYC) – intrinsic valuation (creating, discounted by time and risk) or momentum valuations (price willing to pay)
      • VC could benefit from diversifying investment base – early round by Index recently
    • In crowdfunding, consumer brands may have an easier time going down crowdfunding pick
      • Harder for others to understand some of other sectors / SaaS, for instance
    • Debt funding is #168bn and growing, but small compared to financial services
    • Drawing attention as a focus over time, consumer behavior changes
      • By being more efficient, they can return value to investors and people on the platform
    • Book mentioned: Intelligent Investor – Ben Graham
      • Seth Godin’s blog
    • War chest vs planned capital injections – not a binary answer (eg: compete against Uber – good luck without war chest; tech-enabled services)
    • Funded a company called Breezy – simplifies user interface for older generation, potentially – team/value and invested by US VC’s
  • Andrew Hohns, President, CEO of Mariner Infrastructure Investment Management (Wharton XM)
    • Conceptualized and founded IIFC Strategy as part of his dissertation at Penn
      • Funding gap in project finance to address world’s infrastructure needs
        • Talked about growing projects in Africa, India and others
    • Started a fund as he finished school – raised $500mln for capital projects
      • Including a $1bn transaction with African Development Bank completed with multilateral bank and private investors
        • Provided approx $650mln in additional lending capacity
      • Credit Agricole in 2017 that was “biggest impact investing deal yet” by Financial Times to allow an extra $2bn of funding toward green projects
    • Managing the originations networks for funds with relationships with many global financial institutions

Data Science in Your Business (Notes from Week of April 15 – 21, 2019) May 8, 2019

Posted by Anthony in Automation, experience, finance, Founders, Hiring, questions, Stacks, Strategy, training, Uncategorized.
Tags: , , , , , , , , , , , , , , ,
1 comment so far

It feels appropriate to have the week of Google I/O’s conference to be the one that aligned with my notes where data was the primary focus, especially when Google was pushing ease of technology (centered around giving them access to more data). There were some excellent memes/pictures around for the differences of Facebook asking (hah) for data compared to Google (where they have a ton of it already but they mention the stuff coming).

Kaggle, a research data competition site, held a conference centered around hiring and careers in data with guest speakers from some of the most interesting companies working with data, including Google. Listening to career-based or hiring podcasts related to the field gives insights to how corporations or orgs focus on the spectrum of people vs skills. The other side of this would be a discussion on how data science teams can impact the business at value. What can be done with the data? Is it helpful? Which metrics are measurable and important?

A few episodes went into the business and general application of research in the data. Research on how personality and music are interrelated or satellite imagery from NASA to provide various live solutions – and to what extent they can be designed to be used. A few non-data science-specific podcasts dealt with FinTech, HealthTech and marketplace tuning. How do startups fight against incumbents in various marketplaces? Are their offerings sustainable or do they break the model of what we have seen?

Hopefully my notes provide some incentive to go back and listen to one or each of the podcasts. Or connect via Twitter to talk more!

  • Validating D/S with QuantHub, Matt Cowell CEO (BDB 4/2/19)
    e9qpszxn_400x400

    • Also with Nathan Black, Chief Data Scientist at QuantHub
    • Talking data science – math with business and IT skillsets
    • Companies are manually doing tech assessments with candidates / roles – programmer-based primarily
      • QuantHub looks at a comprehensive, scientific approach to assessment of the stack of what may be necessary
    • NLP of resume, and then Bayes’ updating for input and results from that
      • Assessment platform at the core and using it for hiring (natural use-case) but then benchmarking organizational skills
      • Aggregators of content and matchmaking (say, data analyst up to data engineer – wrangling, SQL improvement)
    • Assessments done and individuals won’t be charged – overall value in helping talent
      • Building the training side in the next quarter
    • How do companies engage QuantHub? 5min to get running – align the incentives for using it / relationship.
      • What are the challenges? What are the skillsets? What do you mean that you want them to do?
      • Requirements changing by different statistical methods (along with computing power, designing algorithms vs latest research)
      • Knowing/vetting data scientists as having to do the role / job – can you mirror the actual job requirements? (try vs buy, potentially)
    • Cloud computing or hardware innovation as ‘cool’ in a world of software – highly critical, depending on certain organizations
      • Some orgs NEED the data improvement there (Kubernetes, Docker, Cloud, Spark vs Power Excel user)
    • Matt as a product strategy guy – book “Monetizing Innovation”
      • How do you determine what the market and customers want
    • Nathan’s book – “Make It Stick” on how you can improve learning methods
  • James Martin (Staffing Lead, D/S at Google) – Getting Noticed in D/S (Kaggle CareerCon 4/17/2019)
    google-cloud-platform-for-data-science-teams-4-638

    • Looking at field – ML Engineer to Quant/Statistician to Product Analyst to Data Analyst
    • Research tips: Open source projects (understanding current trends, gain experience, make connections)
      • Job descriptions (take time to research the differences, tailor approach)
      • Market research (professional networking, connect dots between companies you’d consider)
    • Resume tips: Concise (focus on telling a story on the experiences to highlight outcomes)
      • Factual (if listing skills or strengths, use examples to support them)
      • Related experience (highlight specific projects related to area you’re applying)
    • Networking tips: Professional profile (be detailed but concise about the skills you use and experiences)
      • Targeted outreach (connect after a conference, target approach for conversation)
      • Conferences (meet/greet if possible, follow up via email, LinkedIn, twitter)
  • Gidi (Gideon) Nave (@gidin), Assistant Professor of Marketing (Marketing Matters)
    • Cambridge Analytica before Cambridge – music research and how it relates to certain traits
      • Extroversion and openness were 2 big ones that they could pull from 5 traits (MUSIC)
      • MUSIC: Unpretentious, Sophistication were 2 of them
    • Could pull personality cues from 20 second, unreleased clips based on scores of 1 to 7, also
      • More agreeable people had higher scores in general
    • Personality on 5 (OCEAN – Openness, Conscientiousness, Extroverted, Agreeable, Neuroticism)
      • Questioned whether they could use music to test for the personality (as opposed to the other direction)
      • Personality is established at a young age, so can music likes on Facebook give you a personality side – as mentioned, it did ~2 better than others
  • Fintech for Startups and Incumbents (a16z 4/7/2019)
    • With GP Alex Rampell (@arampell) of CEO/cofounder of TrialPay and partner Frank Chen
      tumblr_nkfx32192w1tq3551o1_640
    • Assembling a risk pool (good and okay drivers subsidizing the bad drivers, or healthcare – same)
      • No economic model for skipping a segment – psychology for half price insurance (say, going to gym)
      • Half the number of customers – taking the ‘good’ ones, profitable ones
      • Insurance has mandatory loss ratios for different industries
    • HealthIQ – mechanism for exploitation on ‘health’ – in FinTech, it was SoFi on HENRYs
      • Positive vs adverse selection – debt settlement company ads, for instance – negotiate on your behalf to settle
      • Healthier people as living longer than non-healthy people – left them more profitable for proving being better
        • Gives them good customers (adverse selection for ‘quick, no blood test, 1 min’)
    • SoFi as stealing customers from the normal distribution – better marketing message “you’re getting ripped off, come to us”
    • Branch as investment – collect as much data as possible and look for correlations – small, mini-loans
      • Induction as pattern is a willingness to pay (credit is remembered) – went and got data from your phone
      • How many apps did you have? Did you look like you went to work? Are you gambling?
        • Counterintuitive potentially: battery goes dead leaned default, gambling app meant more likely to pay, etc…
    • Earnin – phone in pocket for 8 hours, last paycheck and RTS data confirming – will give money that you have earned but don’t have yet
      • Can tip interest or not – can you encourage people for positive community and people driving safely
      • Nurture better behavior – helping to turn customers into correctly priced customer (vs bank that doesn’t want them)
    • Vouch as company that failed but your social network had to vouch for you – Person X is okay, so you can even put up $
    • Tiffany & Co for a long time was owned by Avon lady – but its brand was massive and one of most renown jewelers
      • Could make sense for acquiring more customers, though
    • Killing Geico – take 20% of customers but only take the good ones
      • Selling negative gross widgets, for instance – probabilistic ones (and the bad ones aren’t needed)
    • Turndown traffic strategy – Chase turns down a lot of people for problems (can’t profitably do $400 loan, for instance)
      • Here’s a friend after they rejected them (but see traffic) – Chase will tell you to go to a startup for better underwriting
      • Amazon got right – HP book, for instance – had ad for B&N right next to Amazon (bought) – would make $1 on the ad click at 100% profit
        • Used this to reduce the price on their site and wasn’t sharing it
    • Rapid fire: “Always invest super early” – 9 weeks to decision vs 1 day – can’t get good deals at length
      • Best things aren’t cheap – they’re often expensive – better strategy can be plowing in late (“Can’t believe we’re putting this much $”)
      • Gating item for entrance into a space or into different models – cost of capital and distribution as often the unique thing
        • Geico could easily add additional traffic to start-ups
      • M&A strategy early? Encouraged and used Facebook – buy existential threat (surrender 1% of market cap to buy Instagram)
        • Facebook spent 7% of market cap for WhatsApp, Oculus, etc…
        • Buy the guys that failed trying – courage to build something new -> take them and put him in charge for person that was successful (at big co)
          • Trying to build this thing for ~10 years vs start-up that built something in 1 year (put this one in charge)
          • Ex: AmTrak buys Tesla – worse thing “You work for us” but you want products to push distribution and talent for understanding
        • Only difference was distribution and the possibility to do that
  • Jennifer Dulski, author of Purposeful, Head of Groups & Community at Facebook (Wharton XM)
    • Talked about their group initiatives at Facebook – communities policing themselves as well as methods to flag content
    • Mentioned example of having an employee that came up to her and asked if she had done a good job, she just wanted a bonus or something $
      • Taught her about incentives and why people do what they do / good to know the motivators
      • What drives people?
  • Anth Georgiades, CEO of Zumper (Bay Area Ventures, Wharton XM)
    z-pm

    • Purchase / hire of Padmapper in 2016 that added quite a bit of Canada business (size of California, real estate-wise)
    • How to match both sides for a marketplace – suppliers vs customers
      • Chicken and egg – focus on one, improve other and repeat
  • Word2vec (Data Skeptic 2/1/2019)
    • Produces word embeddings – autoencoders as NN for something like compression to retrieve output successfully
      • m down to n via mathematical representation (m < n)
      • Language compression for vector rep
    • Running the algorithm training on Google’s full internet, Facebook’s news article, Wikipedia, etc… to achieve similar words/spaces
      • Not super adaptive – nonsense place for words it hasn’t seen
    • Real world application – king for word2vec and subtract male – then add in female and you get queen
      • 300 dimensional space, semantics of that example
      • Bad example: training on entirety of internet results in something like doctor – male + female = nurse (gender neutral data)
    • Feature engineering for bag of words, good example for transfer learning, also (train model on text and then use parts of it on smaller area)
      • Very large corpora for NLP but can use pre-trained models of word2vec and use it in other models
  • Sean Law (@seanmylaw), D/S Research and Dev at TD Ameritrade (DataFramed #59 4/1/2019)
    sean_law_quote_card_3

    • Colleagues thinking he tends to ask lots of interesting, hard ?s – hopefully with answers
    • If he’s a hard worker, then he’ll do great – being in industry for 3 months time – has to juggle effective time spend
    • Molecular dynamics is short time scale and lots of computing power – parallel computing before and now the growth / usage of GPUs within days
    • Hypothetical example for alternative data solutions – driving to work and listening to NPR where NASA had a new dataset that was sat imagery
      • Pollution ORA dataset for air quality – area of high commodity necessity with pollution joining
    • If building ML as a binary classifier – but don’t know where the data is (do we have to collect? 3rd party API? Internal?)
      • How much effort to get it usable in the pipeline? Then, what’s the reasonable accuracy level – better than 50-50?
      • Some signal in the noise
    • Exploring chat/voice – query account balance, stock price, news articles via Alexa/Echo
      • Headless / device-agnostic option – audio to parsing of text, understanding what customer wants (NLP) and then what it means
      • Following PoC and into production
      • PoCs can miss: scalability (unless claim is to get scalability), model accuracy (not best model immediately), real-world applications (use case in mind)
    • Interpretability standpoint – regularization, L1 and linear – constraining coefficient can be very useful (background noise from video, for instance)
      • Time-series pattern-matching as non-traditional
    • Calls to action – data failures of things that didn’t work or negative results

Impact and Data to Growth (Notes from April 8 – 14, 2019) May 1, 2019

Posted by Anthony in cannabis, Digital, experience, finance, global, NLP, questions, social, Strategy, training, Uncategorized, WomenInWork.
Tags: , , , , , , , , , , , , , , , , , , , ,
add a comment

I started watching Street Food on Netflix and in the Osaka episode, the chef makes a great claim that can work for today’s notes: “If you want to create your own current, you cannot live your life by going with the flow.” Granted, you can use the current as a guide, but to truly create something unique, you have to hop out of the path and try your own luck. Today, I was listening to an episode even with Keith Rabois on Invest Like the Best, and he’s a proponent of not making 10% decisions, but rather investing into 10x ones – the riskiest that can pay off are the ones that will be truly incremental. The 10% experiments may improve a bit, but won’t exponentially get you scaling.

I had a great mix of NLP / Machine Learning podcasts, social/responsible corporations like United by Blue and Everytable, to go with sales thought processes, data ethics, and finance starts on a global scale. Each person / founder / company tackling unique challenges based on their individual experience that got them to that point. How can you approach the problem? And more importantly, what’s the right way that your expertise leads you to a solution for this problem?

For some, it was how to release the stigma in the cannabis industry to expose people to the health benefits as we’re legalizing in more states? United by Blue’s founder wanted a truly sustainable business model that supported his beliefs in giving back. An expert data scientist by the name of Debbie continues to improve women relations in tech and data-related fields by 1) supporting others graciously and 2) providing, particularly Latin American women, the opportunity to see how her passion for learning sparked her adventurous career.

Hope you enjoy! Leave a comment or follow along!

  • Su Wang, Elisa Ferracane in Authorship Attribution, UT (Data Skeptic, 1/25/19)
    Link to ACLWeb for paper

    • Discourse units in addition to others
      • Rhetoric structure theory (RST) – 2 elementary clauses (as Elementary Discourse Units – EDU)
      • Relation is related by an ‘elaboration’ where the 2nd sentence elaborates on the previous sentence
      • Rows are sentence pairs and the cells show the relations between the 2 (1st, 2nd; 2nd, 3rd, etc…)
    • Plagiarism detection, authorship attribution as semantic inference (both authors as computational linguistic PhD)
    • Can be unsupervised (classification of text to an author style) or supervised (accuracy or how closely it matches an author – assign key)
    • For the paper, they looked at 9 texts via Project Gutenberg and did a CNN – high-level baseline
      • Had 2 months to get it to the next level, optimization – said that LSTM performed the best but too slow for translations or 1000s of words
      • CNN can be as good as LSTM or better depending on architecture
      • Tried grammatical matrix, columns are entity, rows as sentences – subject, object, other
    • Used dataset of 19 books and 9 authors as extension of prior state-of-the-art paper
      • IMDB as another dataset – short texts with many authors (tried to do with Twitter but can’t get structure/sentence)
      • Initial data set was ~15% more accurate (99.8%)
      • 98.5% accurate for extended novel classification ~50 texts – SVM did well also of about 84-85% (more data may allow them to be more acc)
    • Looking at the different types of features – RST was more sophisticated in that the models did better in all experiments
      • Could embed or use the one factor as a distribution over other set of features
    • For IMDB dataset, discourse features nearly didn’t help – too short to establish structure
    • Human as the ‘gold standard’ but certainly not perfect. Authorship probably different task, though.
      • Would require expertise on the authors’ part. Machine can pick up on far more patterns.
    • Next for him – semantic narratives and story salads (grant via DARPA?)
      • Coherent narratives, shuffle the sentences and reconstruct the story.
  • Sylvia Wehrle, founder CEO of June CBD Apothecary (Wharton XM)
    uuonxuko

    • Talking about the difference between CBD, THC and other strands
    • Humans as growing up with various forms of hemp oil – additive and purposeful for our evolution
    • Using the appropriate properties to go through benefits – getting the common questions out of the way
  • Donald Robertson (@donjrobertson), author of How to Think Like a Roman Emperor: Stoic Philosophy of Marcus Aurelius (Wharton XM)
    • Book discussing difference between stoic and Stoic, cynic and Cynic, etc…
    • Calm and indifference is different than how it may have been perceived
  • Sam Polk (@sampolk), author and CEO of EveryTable (Wharton XM)
    allen_181217_everytable-14

    • Sustainability at Feast (prior company)
    • Using Feast as test-tasters for EveryTable menu / offerings
    • EveryTable as sustainable, healthy food for people in an affordable way
      • Restaurants with partnerships of cities/areas that match the pricing (Santa Monica different than Watt or Compton)
      • Can order on app and go pick up meal for < $8 – able to do this with scale – try to ensure this early
    • Rolling out BlueApron-style weekly meals at the same price as in store
    • Corporate offerings where they have EveryTable coolers / fridges that take a credit card / payment and can pull out your order
  • Brian Linton, United by Blue founder CEO (Wharton XM)
    962afe495a8ae8ea0aaabcf099e9c715.w1583.h658

    • Originally moved from Singapore / Asia, went to college in Michigan – boredom satisfaction with sales
      • Started with ‘guady’ jewelry that was travel-related (tourist-style jades, emeralds, etc…) that he would source from home
      • Travel down to Florida / other areas and sell to region
    • Believed in doing good, so he would donate ~5% of all proceeds to ocean conservation – realized this wasn’t sustainable
      • Random donations of $1000s or %’s
    • Finally started United by Blue to develop the sustainable business model and what he believed in
  • Right Way to Get Your First 1000 Customers with Thales Teixeira (@thalesHBS), associate professor at HBS (HBR IdeaCast #676, 4/2/2019)
    • Startups failing because they try to emulate successful disruptive biz and scale instead of learning about initial customers
    • First customers are more than the money, word-of-mouth, R&D and free feedback
    • Etsy, Amazon, Netflix, Uber had no new technology (just finally had the map to see if there were cars coming)
      • Etsy went to craft fairs to recruit sellers, who then attracted more buyers
      • Pinterest tried to create a culture initially to set the tone for quality
      • AirBnb was awful initially in NY, so the founders wanted to find out – places were great but pictures were awful
        • Rented a nice camera and offered to take the pictures to improve the ones on the listings
    • What is the primary driver of value to the customers to deliver? How does technology play a role in this?
      • AirBnb had 1 engineer (founder) for a long time – increase the utilization of an expensive asset
        • Hid the options initially – didn’t have much inventory so they would email / find out and then get back to customers
        • Show availability – needed to stay in a house in the places
    • Technology is the enzyme / enabler of the start-up or experience and acquire the customers to purchase the product
      • People that like smaller companies, try new things, explore products and tell them
    • Unlocking the Customer Value Chain (Thales’ book)
  • Critical Thinking in D/S – Debbie Berebichez (@debbieberebichez) (DataFramed #58, 3/25/19)
    • Debbie is a physicist, TB host and CDS at Metis in NY (first Mexican woman to get a PhD in Physics from Stanford)
      • Promoting women in STEM, especially hispanic women
    • Metis is a data science teaching company as an arm of Kaplan in NY, San Francisco, Seattle
    • Did 2 postdocs around Columbia before going to Wall Street to work as a quant – but money wasn’t the only motivator, so she left
    • At Cambridge, she remembered speaking about Astronomy 101 as her first intro to physics class – was on 2 years of scholarship
      • She took a walk with her friend Rupesh and said that she was crying – “I just don’t want to die without trying physics.”
      • Passion drew attention and professors – offered her for a 2 year physics degree (skip first 2 if she could pass a test with complicated derivatives)
        • Had 2+ months to learn calculus, basics to mechanics and more – passed her test (9am to 9pm)
    • Mentioned going into high school to discuss data science – class was doing coding/SQL/data look on animals
      • Had 1 group that was looking over turtles – couldn’t answer the units for weight (triple digits) – not lbs, but grams
      • How this made sense – how to piece together reasoning / bias – how needed this skill was
      • Not bothering to check outliers or some data was exhibiting – why do we do it all?
      • Danish astronomer built and designed 1000 stars, which wasn’t much, but Newton and Kepler, Copernicus all derived theories from
    • Large datasets vs small datasets – insight more important vs size (big data as sometimes unnecessary)
    • Feynman quote about fooling ourselves – bias that we create.
    • History of Statistics – Stiegler, normal distribution and derivation of central limit theorem by Gauss and Laplace (1809 with Jupiter’s motion around sun)
    • With her bootcamp – she wants to attack the question of using the right algorithm and how to analyze the problems at hand
      • How to choose a data project in what you’re interested in – madewithmetis on Metis site
    •  Singular value decomposition (SVD) and reducing dimensionality, worked with Genentech founder – healthy DNA vs patient’s DNA and cancer
      • Reducing dimensions to the ones that were most relevant – NLP also
    • Think deeply, be bold, help others – Grace Hopper celebration talk
  • Dean Oliver (@deano_lytics), Data Analytics (Wharton Moneyball)
    video_default

    • Talking about how far behind NFL is behind NBA in tracking
    • There are people doing video for football, but not much – not widespread
      • Position groups will gain entirely different/new insights into how they’re playing
  • Cordasco Financial Network Planning + Sri Thiruvadanthal (Behind the Markets, Jeremy Schwarz)
    • Discussion of hedging dollar vs not – if hedging, probably wise to diversify with global
      • If not hedging, then europe may not be as great
    • Current markets say that liquidity isn’t as high with central banks, stocks start to couple and lose diversification / value
      • Decoupling early on in cycles
    • Relative value may be fine but not absolute for the dollar compared to other currencies
  • Jeppe Zink, GP at Northzone (20min VC 087)
    pbnaanhuf2i5ymkfo4qn

    • Invested in Spotify, Bloglovin, TrustPilot with focus on SaaS, fintech, mobile
    • Worked at Deutsche Bank as analyst in corporate finance, tech banker – left with 90% of team
      • Convince bank by buying principal investments before IPO in late 1990s – worked out
    • European cycles of tech – 100mln to 3bn people online, digital increase and telecom infrastructure
      • First VC firms in existence were doing integrated buyout model, which failed initially – too transaction focus
      • VCs have the talent that’s aligned with the founders now – 90% of VC firms that existed in 2000 had died in 2002
    • 10 year cycles where the great companies withstand, others don’t
    • Stage agnostic for them, series A to D rounds
      • Nordic companies of unicorns for what he has had success with
      • Europe as dropping trade barriers initially and in the 90s, broadband and smart phone starts (Nokia, Ericsson)
    • Has offices in the north for Northzone but he makes it up every other week or so
    • Try to emulate the start-up and have hunger/ambition always
      • Not trying to stagnate – venture capital vs patient (he thinks impatient is better – learn through failure and testing)
      • How fast can you learn to level up and deliver the best product? Continuous measurements, KPIs.
      • For Jeppe – momentum in product development
    • Most intrigued by fintech investing – Peter Thiel as one of his favorites
      • Most recent company was CrossLend – consumer lending with European bank lending
      • Book: Startup Growth Engines as collection of random founders and interviews

Experimentation & Testing (Notes from March 25 – March 31, 2019) April 17, 2019

Posted by Anthony in Digital, experience, finance, global, Hiring, questions, social, training, TV, Uncategorized.
Tags: , , , , , , , , , , , , , , , , , , , , , , , ,
add a comment

I know, I know. It’s a bit of a cop out to use a Game of Thrones image on the back of the Season 8 premiere from Sunday. Sue me [please don’t]. And I’ll give credit to the image creator: Instagram @chartrdaily for the fun visualization. However, after listening to Pinnacle Sports’ Marco Blume, I couldn’t help after hearing deployment strategies for their prop bets on popular TV shows, such as who will be left on the Iron Throne or the ever popular “Who dies first?” props. They experiment, hypothesize, post a line with a limit (hedge risk) and let the market decide from there. And boom – we have the theme of the week!

Antoine Nussenbaum, of Felix Capital at the time, mentioned going from private equity to start-ups and venture funding where they had to decide between backing people or belief in the company. He got first-hand experience by starting a company with his wife, successfully gaining funding, and then exiting – only to fail with a different company that wasn’t scaling. How did he go through frameworks to decide on startups to fund or help?

Mark Suster gave his take on how he comes to investment funding – sales, technical skills and being aware of each. How did his entrepreneurship experience influence his framework for funding new start ups? Why is it that there is a sweet spot for amounts based on run rate? Experimenting, failing and adjusting.

Then I had listened to 2 data scientist / researchers in their discussions of NLP parts – what to test, what they assumed to be true, how to approach new methodology and testing this methodology. Is there a limit to the progression that can be made with NLP? Why might it be relevant to decide on testing state-of-the-art further? Then, ultimately, what’s the applications for how we can use that optimization to improve the current status quo?

I hope everyone checks out what may interest them – this was a fascinating and fun week. So much so, that I suggested to a few different students for them to check out different parts (granted, I do this often, but I was quite excited to share these ones).

Cheers!

  • Antoine Nussenbaum (@Nussenbaum), Principal and cofounder of Felix Capital (20min VC 084)
    pvcmh-1_

    • Partner at Atlas Global prior, p/e fund that was part of GLG Partners
      • Working on digital early-stage, venture fund and helped startups bootstrap after missing the tech side
      • Miraki, Jellynote, Pave, Reedsy, and 31Dover as some of his best investments
      • Helped start Huckletree with his wife
        • Looked for investment of $80mln but got $120mln
    • Backing someone vs backing the company initially in early stage funds
    • Raised in Paris in international environment, lived in UK as well
    • Launched 2004 software-on-demand business with 2 friends “that was not scalable at all”
    • Did M&A in the UK after leaving software
    • Felix Capital at intersection of creativity + technology, lifestyle brands: ecommerce and media, enabling tech
      • Stages – flexible capital, but have made investments from $200k – $6mln, focus on Series A + B
      • Geographic – agnostic, as long as backing entrepreneurs
      • Advisory services and focused on helping their investment companies
    • More entrepreneurs that know the playbook and how they can build, grow and scale
      • Looking for more companies that can scale globally or expanding outside with proper funding
    • Using Triangle as an example – bathing suits on Instagram strategy and launching millions of product via digital
    • ProductHunt as a blog he gets lost in – 15 min of destruction
    • Lifestyle-related excitement: food side, better life, marketplaces
    • Hard Thing about Hard Things and Capital in the 21st Century – relationship of wealth and economic wealth
  • Mark Suster (@msuster), MP @ Upfront Ventures (20min VC 085)
    8647fd890a54e10bd320ada2651040c5

    • Was VP of PM at Salesforce.com before Upfront
    • Late 80s – had an interest in development as a student in college in the UK
      • Worked initially as a programmer at Anderson (Accenture) for 8 years
      • Entrepreneurship isn’t for everyone – better to start earlier, need to have a fundamental understanding of systems (coding)
        • Python, PHP, Ruby, JavaScript – not trying to become best developer – just knowing the systems
        • Sales experience would be second – telesales or customer support – ask CEO to do an hour a week of calls
    • Started 2 software companies – one in England and then Silicon Valley, selling both – backer brought him in to VC
      • Fred Wilson wasn’t an entrepreneur, but does give you the insight
    • Don’t get the sense of urgency with too long a time – 3 months vs 12 months
      • Too much capital creates laziness and shortcuts that lead to mistakes
      • 18 month run rate for capital – takes 3-4 months to raise (start with 6 months plus)
    • Wants to see early stage companies once a month, roughly.
    • $240mln fund – invest half into companies and reserve the other half for follow-ons
      • 3 year timeframe, $40mln with 5 partners – $8mln per partner
        • Series A, B rounds where each partner is doing 2-3 deals per year when avg is $3-5mln investment
    • On his blog, has the “11 Attributes of Entrepreneurs”
      • Best known post would be “Invest in Lines, not Dots” – x-axis as time, y-axis is performance (any given day, your dot)
        • Interactions create a line that matches a pattern and he can decide if he wants to do business
      • Not a big fan of deal days or investor days where you hype up a company because of this
    • 50 coffee meetings a year – once a week, if you meet 50 entrepreneurs a year, maybe you’ll become close with 5-10 of them
      • Single best introduction is from a portfolio company CEO for an investor
    • He knows and built software company – SaaS-space since he knows how to be helpful
      • Data and video tech industry (has 11 personal investments and 5 are video)
      • AgTech as an underappreciated industry so far – stays quiet until a few investments before hyping
    • Too much company, too much money and entrepreneurs clouding the market for everyone else
    • Book “Accidental Superpower”, how demographics and topology will drive the future and how areas grow
  • Marco Blume, Trading Director at Pinnacle Sports (DataFramed #54 2/18/19)
    pinnacle_logo

    • Got into data science by “sheer force”, building quant team out from Excel going to R
      • Efficiency was by orders of magnitude since R was better than Excel
      • Could do anything with risk management, trading, sports
    • Pricing GoT, hot dog eating contest, pope election and making the lines
      • Use pricing and market analytics to let the people set prices
    • Risk management in general – maximize probability and hedging risk
      • Does the bottom line change? Does it affect anything? Regulations.
    • NBA where all teams have played each other – have a good idea of strength of teams
      • Soccer or world cup – not as much certainty with teams not always playing each other
      • Start of season has a lot more volatility and responsiveness to bets because of uncertainty
        • By end of season, bookmarkers have the price and knowledge, so they’re likely to increase risk
      • Bayesian updating
    • Goals to improve models, open new betting options to clients
      • Low margin, high volume bookmaker – little bit with a lot of options
      • Book of Superforecasting – group of people who are better at forecasting
        • Pays them already at Pinnacle – consultants, betting and paying the price
    • Much bigger R shop than Python at Pinnacle, active in the R community
      • R becoming more of an interfacing language and production language (vs C# or other), can use R-keras or plumbr
      • Teaching dplyr, rmarkdown and ggplot cover 95% of their work outside of specialists
    • GoT as one of his favorite bets
  • Matthew Peters (@mattthemathman), Research Scientist at AI2 – ElMo (Data Skeptic 3/29/2019)
    ai2-logo-1200x630

    • Research for the common good, Seattle, WA research
    • Language understanding tasks – ELMo (embeddings from Language Models)
    • PhD in Applied Math at UW, climate modeling and large scale data analysis
      • Went to mortgage modeling, tech industry with ML and Prod dev in Seattle
    • Trying to solve with very little human-annotated data, technical articles or peer-reviewed
      • Very difficult, very expensive to annotate – can you do NLP to help?
    • Word2vec as method for text to run ML on text, context meanings of say, bank
    • ELMo as training on lots of unlabeled data
      • Given a partial language fragment, language modeling predicts what can come next
      • Forward direction or backward direction (end of context), neural network architecture
    • Research community may want to use ELMo, commercial use to improve models already in prod
      • Pre-trained models available and open source
    • In the paper, evaluated NLP models on 6 tasks – sentiment, Q&A, info extraction, co-reference resolution, NL inference
      • Got significant improvements on results from the prior state-of-the-art models
      • Character-based vs word approach
        • Single system should process as much text as possible (morphology of the word, for instance)
    • Paper over a year old now but Bert was put up on ArXiv to improve upon ELMo (transformer architecture for efficiency)
      • Scaled the model that could be trained by many X’s, quality is tied to the size / capacity
      • Language modeling loss changed, as well (word removed from middle of sentence and predict before/after)
      • Large Bert models have computational restrictions – how far can you get by scaling the model
  • Kyle and early Data Science Hiring Processes (Data Skeptic 12/28/18)
    github-logo-und-marke-1024x768

    • Success isn’t correlated with ability to give good advice
    • Conversion funnel for businesses: website that sells t-shirts, for instance
      • Tons of ways to bring people into the door / website (ads, social media campaign, ad clicks)
      • Register an account or put into cart (what %, track it, a/b test and improve)
      • Cart to checkout process (how many ppl? Credit card entered, goes through, etc…)
    • Do any sites convert faster than others? Keep track, find out why / focus on continuing it
    • Steps for job hire: video chat / task / phone screens / on-site next / offer
    • Resume should be pdf (doc may not open nicely on Mac or otherwise) – include GitHub
    • SVM – should have margins or kernel trick on resume (otherwise, don’t include it)
      •  Ex: ARIMA (auto-regressive integrated moving average) – time series data

Data + Opportunities for Masses (Notes March 4 – March 10, 2019) March 28, 2019

Posted by Anthony in education, experience, finance, Founders, Hiring, medicine, NFL, questions, training, Uncategorized.
Tags: , , , , , , , , , , , , , , , , ,
add a comment

This week was all about different types of people chasing and building what they wanted to build. What drives people – what are they drawn to? Passion, energy and asking the questions to further the quenching of thirst for the next step. Reading the notes I had for this had me down a rabbit hole for each one – thus the delay.

Interestingly enough, these founders, presidents, authors and data scientists / explorers are in different industries. We had digital tech and marketing, strategy, data science as it applied to healthcare, NFLPA / financial literacy, and education of cs and tech stacks through ISA’s.

Believe that you can learn from others to further what you do to progress forward.

Steve Mast, President and CIO at Delvinia (Measured Thoughts, Wharton XM)
1rz2v0al_400x400

    • Using Methodify for geolocation data / surveys
    • Digital tech to help marketers, researchers and leaders collect, visualize and enable data
    • Educated as an architect, then video game designer and producer in the 1990s
    • Joined Delvinia in 2000 to build interactive design and digital marketing
      • Talked about doing events where they get volunteers to sign up for brand / marketing analysis
      • Ask 2-3 questions that are pointed, geo-enabled for brand / important points at the event
      • Makes sure not to have personal identifiers
  • Joseph Jaffe (@jaffejuice), author Built to Suck (Wharton XM)
    • Admiral, co-founder at HMS Beagle, strategy consulting for surviving
    • Talked about how Harley Davidson is in every marketing book but what are they doing now? Floundering
    • Nike ads – never talked about the product (shoes), but call to action – Just Do It
      • Nike as providing the tools for which you act
      • Used their stores as ex of environments for their product – having treadmills
        • Each employee was a runner, wearing Nike and touting the products, experts
    • Remembers asking his class if they knew the first bank to implement ATMs
      • Didn’t provide the answer – jumped into 4 P’s – one student asked what the answer was
        • Answer was that it didn’t matter because every single bank mentioned had ATMs
      • Only thing that mattered – first-mover’s “advantage” if you can keep it
      • “What are you doing now?”
  • Chris Albon (@chrisalbon), Getting First Data Science Job (DataFramed #55)
    2672ecf4-b76e-478c-9407-fc48877479bf-1515514797324

    • Data Scientist at Devoted Health, helping to fix healthcare system
    • Co-host of podcast Partially Derivative, since stopped, and had a kid / moved
    • Humanitarian non-profits, working on team for building companies with a soul
      • Devoted – health insurance company started by Todd (CTO of US) & Ed Park (CEO of health company)
        • Creating company that you’d want family members be a part of
        • Make healthcare that works (primarily senior citizens, Medicare)
    • His background is from quantitative political science – politics and civil wars
      • Perspective of research, experimental, statistics – PhD with these fellows
      • Meeting friends with a ton of amazing, applied projects (LinkedIn, etc…)
      • He needed to be applied vs research in order to get out of academia – joint Kenyan nonprofits (election monitoring and disaster relief)
      • Real data or fake reports, safety, ethic and morals come up – threat models aren’t the same
    • First hire at Brick (free wifi to Kenyan homeless, etc…)
      • Using established tools to provide others data / analysis – for a team to not know that going in, it was impressive (wizardry)
    • As a team, you can hire and absorb senior data scientists
      • People who got first time jobs at Facebook or something, got to see scale and experience that they can move on easily
      • At a Facebook/Google, end up doing heavy data analyses for the massive scale and is a big role
        • Hard, analytical challenges
      • Smaller companies may ask someone to do a ‘full stack’ / general data scientist that has to build everything on their own
    • Early on in hiring process – ex with Master’s in ML, and that’s what you want to do
      • Generalist builders at Devoted, but not strictly ML or other thing
      • Heavy AI or ML would be theory-based, dissertation level technical discussion (obvious focus)
    • Doing data science generally – many other problems – Bayesian analysis, RF, etc…
      • Far more jobs for those that are generalists at companies for business data – predicting drones watering crops, customers churn, illnesses
    • With different backgrounds, should figure out how to feature yourself & experience
      • Side projects, blog posts, portfolio, visualizations in a way that’s easy – testing, GitHub, versioning
    • Talked about his first meeting at Devoted Health – 4 data scientists in the room with a doctor, discussing the coding of health / diagnosis
      • Said he was fascinated in the meeting as he wanted to know that side, new business
    • He genuinely enjoys new techniques, analysis that he doesn’t know and learning about it – passionate about what they are and learning
      • Not hiring for junior – it’s because you will want to grow into senior
    • RF > SVM since it works out of the box, but said SVM is an awesome mathematical tool
      • Used it as a teaching point and visual – but in production, he’d never seen it
  • Eric Winston (@ericwinston), President of NFLPA (Wharton XM, Leadership in Action)
    • Talked about how important relationships and the soft skills were
    • Financial literacy as a passion of his – talked about how little players know going in, especially after college
      • College finance doesn’t teach it, either
  • Austen Allred, Founder/CEO at Lambda School (20min VC 3/8/19, FF)
    untitled

    • Bedrock, GGV, GV, Stripe and Ashton Kutcher as investors – $48M so far
    • Prior, Senior Manager for Growth at LendUp and co-founded Grasswire
      • Income inequality, financial health thoughts – nothing was moving incomes
      • Was in a small town in middle of nowhere, Utah
    • Had to live in his car in SV for a while and figured out how to schedule – during summer, would get hurt obviously
    • Raised $500k initially, couple months of cash left, due diligence – investor decided to not continuing Dec 23 (daughter was born soon after)
      • Never wanted to be in that position again – thought it would’ve been VC but it was more about a successful business
      • At YC, wasn’t focused on demo day – modeled 2 scenarios: 1 with VC money vs otherwise going wrong and seeing no VC money didn’t work
    • About the right time to raise: $1 today would be $3 or $4 later, still had much of their series A – getting dozens of VC emails and say no
      • No goal to raise B at that point, walked through the numbers with Jeff (one of investors) over dinner
      • So Good They Can’t Ignore You (Steve Martin quote, but Cal Newport book)
    • Looking at product-market fit – people would pay whatever to get to the job / signal
      • Incentives aligning, job and person – $1000 to start and pay after getting a job: Got into YC and thought no upfront deposit, etc…
      • List of 7k people, trying to refine and make sustainable
    • Training people online was tough, free upfront / no SITG – no Bay Area / NY, online engineering students
    • Iterating on all facets of business so quickly: had to do it, quickly and concurrently
      • Each 5 weeks do a project, roll people together and do an app – if they can’t, roll it back
      • “Insane” – but more people just can’t fathom DOING, the ACTION
      • Before running the experiment, they determined the metrics for success and failure (if it doesn’t happen, fail)
      • Career coaches / meetups / staff bonuses for people trying to get people hired – success of those 8 trials
    • Wright Brothers biography book and Les Miserables (humanity)
    • Changing SV – fundamental human problems, he wants them to build more, try more
    • 500k students in the year for 5 years goal
%d bloggers like this: